{"title":"A novel impedance-based robust fuzzy sliding mode compliance control for the dexterous robot finger with uncertainties","authors":"J. Pei, Siyang Yang","doi":"10.1177/17298806231182750","DOIUrl":null,"url":null,"abstract":"To promote the precision and flexibility of the dexterous robot finger, a novel impedance-based robust fuzzy sliding mode control approach is developed. In the proposed scheme, an impedance control part constructed aims to regulate the contact force; while the robust fuzzy sliding mode controller proposed accounts for enhancing the anti-interference of this uncertain robotic system. Specifically, by analyzing the forward and inverse kinematics of the finger, its dynamical model with unknown and uncertain force disturbances can be established, and based on this model, a novel robust sliding mode impedance force controller has been designed, also, several critical impedance control parameters can be quickly optimized by invoking the fuzzy logic system. Ultimately, the Lyapunov stability of the proposed control is strictly demonstrated in mathematics. The simulations present the efficacy of the proposed scheme in both constrained and unconstrained spaces.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231182750","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
To promote the precision and flexibility of the dexterous robot finger, a novel impedance-based robust fuzzy sliding mode control approach is developed. In the proposed scheme, an impedance control part constructed aims to regulate the contact force; while the robust fuzzy sliding mode controller proposed accounts for enhancing the anti-interference of this uncertain robotic system. Specifically, by analyzing the forward and inverse kinematics of the finger, its dynamical model with unknown and uncertain force disturbances can be established, and based on this model, a novel robust sliding mode impedance force controller has been designed, also, several critical impedance control parameters can be quickly optimized by invoking the fuzzy logic system. Ultimately, the Lyapunov stability of the proposed control is strictly demonstrated in mathematics. The simulations present the efficacy of the proposed scheme in both constrained and unconstrained spaces.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.