An Improved Model for Light Transport in the Color Conversion Element of Light-Emitting Diodes

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED Journal of Computational and Theoretical Transport Pub Date : 2022-04-16 DOI:10.1080/23324309.2022.2086572
Chih-Yang Wu, D. Hong
{"title":"An Improved Model for Light Transport in the Color Conversion Element of Light-Emitting Diodes","authors":"Chih-Yang Wu, D. Hong","doi":"10.1080/23324309.2022.2086572","DOIUrl":null,"url":null,"abstract":"Abstract Light transport with fluorescence in a phosphor layer based on radiative transfer theory is an efficient tool for understanding the performance of a phosphor-converted light-emitting diode. In this work, the models based on radiative transfer theory including light conversion of phosphor particles are developed for calculating the light transport in planar remote phosphor layers. The models developed include an ordinary differential approximation and an improved model based on the differential approximation and an integral formulation of the transmission light flux for a phosphor layer with Fresnel boundaries. We calculate the light extraction efficiency (LEE) of a phosphor layer as a function of various parameters, such as the thickness of the layer and the concentration of phosphor. The present models are validated by comparing the results obtained by the present methods, the double spherical harmonics method of order one and a Monte Carlo method. Comparing the results obtained by those methods, one can see that the improvement based on the differential approximation and integral formulation of transmission light flux for calculating the LEE can yield better results for optically thin cases.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"51 1","pages":"101 - 111"},"PeriodicalIF":0.7000,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2022.2086572","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Light transport with fluorescence in a phosphor layer based on radiative transfer theory is an efficient tool for understanding the performance of a phosphor-converted light-emitting diode. In this work, the models based on radiative transfer theory including light conversion of phosphor particles are developed for calculating the light transport in planar remote phosphor layers. The models developed include an ordinary differential approximation and an improved model based on the differential approximation and an integral formulation of the transmission light flux for a phosphor layer with Fresnel boundaries. We calculate the light extraction efficiency (LEE) of a phosphor layer as a function of various parameters, such as the thickness of the layer and the concentration of phosphor. The present models are validated by comparing the results obtained by the present methods, the double spherical harmonics method of order one and a Monte Carlo method. Comparing the results obtained by those methods, one can see that the improvement based on the differential approximation and integral formulation of transmission light flux for calculating the LEE can yield better results for optically thin cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的发光二极管颜色转换元件中的光传输模型
摘要基于辐射传输理论的荧光层光传输是理解磷转换发光二极管性能的有效工具。本文基于辐射传输理论,建立了包括荧光粉粒子光转换在内的平面远端荧光粉层光传输计算模型。建立了具有菲涅耳边界的荧光粉层透射光通量的常微分近似模型和基于微分近似的改进模型。我们计算了荧光粉层的光提取效率(LEE)作为各种参数的函数,如层的厚度和荧光粉的浓度。通过比较本方法、一阶双球谐波法和蒙特卡罗法的结果,验证了所建模型的正确性。比较这些方法得到的结果可以看出,基于透射光通量的微分近似和积分公式的改进可以在光学薄的情况下得到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
期刊最新文献
Exact Solutions for Radiative Transfer with Partial Frequency Redistribution The Extended Diamond Difference - Constant Nodal Method with Decoupled Cell Iteration Scheme in Two-Dimensional Discrete Ordinate Transport Problems A Numerical Simulation of the Magneto-Micropolar Nanofluid Flow Configured by the Stimulus Energies and Chemical Interaction Enhanced Thermoelectric Performance of PbTe Nanocomposites with Ag Nanoinclusions Diffusion Asymptotics With Fully Anisotropic Source and Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1