{"title":"Interaction between tunnel and surface foundation using PFC2D","authors":"V. Sarfarazi, Kaveh Asgari, S. M. B. Abad","doi":"10.22044/JME.2021.10846.2057","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the interaction between tunnel and surface foundation in two dimensions by the particle flow code. At the first stage, the PFC calibration is conducted using the experimental test results rendered by a biaxial test. Then the simulation of a biaxial test is performed by confining a rectangular sample inside four walls. The walls are located at the top and bottom simulated loading plates and the adjacent walls are located at the left and right simulated sample side confinement. The velocities of the top and bottom walls are determined, and they are used for loading the sample in a strain-controlled mode. The respond of the material is evaluated by following the diverse stress and strain quantities. The axial deviatoric stress versus the axial strain for biaxial test on the bonded granular material is drawn, and then the Mohr's circle is drawn in order to reach the failure envelope of laboratory. Secondly, a rectangular model with dimensions of 10 m 10 m containing a central tunnel and a surface foundation is built. The tunnel is situated in sixteen different positions below the foundation. The foundation moves downward with a velocity of 0.016 mm/s. The results obtained show the position of the tunnel controlling the failure volume. Also the vertical displacement at the roof of the tunnel decreases by increasing the vertical spacing between tunnel and foundation. The settlement beneath the foundation increases by reducing the vertical spacing between the tunnel and the foundation. The settlement beneath the foundation decreases by augmenting the horizontal spacing between the tunnel and the foundation.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.10846.2057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 3
Abstract
In this work, we investigate the interaction between tunnel and surface foundation in two dimensions by the particle flow code. At the first stage, the PFC calibration is conducted using the experimental test results rendered by a biaxial test. Then the simulation of a biaxial test is performed by confining a rectangular sample inside four walls. The walls are located at the top and bottom simulated loading plates and the adjacent walls are located at the left and right simulated sample side confinement. The velocities of the top and bottom walls are determined, and they are used for loading the sample in a strain-controlled mode. The respond of the material is evaluated by following the diverse stress and strain quantities. The axial deviatoric stress versus the axial strain for biaxial test on the bonded granular material is drawn, and then the Mohr's circle is drawn in order to reach the failure envelope of laboratory. Secondly, a rectangular model with dimensions of 10 m 10 m containing a central tunnel and a surface foundation is built. The tunnel is situated in sixteen different positions below the foundation. The foundation moves downward with a velocity of 0.016 mm/s. The results obtained show the position of the tunnel controlling the failure volume. Also the vertical displacement at the roof of the tunnel decreases by increasing the vertical spacing between tunnel and foundation. The settlement beneath the foundation increases by reducing the vertical spacing between the tunnel and the foundation. The settlement beneath the foundation decreases by augmenting the horizontal spacing between the tunnel and the foundation.