{"title":"A novel ESO-based adaptive RISE control for asymptotic position tracking of electro-hydraulic actuator systems","authors":"Qian-Kun Liang, Yan Cai, Jin-chun Song, Bin Wang","doi":"10.1177/01423312231189770","DOIUrl":null,"url":null,"abstract":"This paper is focused on asymptotic tracking control of electro-hydraulic actuator (EHA) systems subject to matched and mismatched time-varying disturbances. To counteract the matched disturbance, a novel extended state observer (ESO) is proposed to achieve asymptotic convergence of the estimation error, by incorporating the strictly positive real (SPR) Lyapunov design method and a Nussbaum function. To further suppress the mismatched disturbance, an adaptive robust integral of the sign of the error (RISE) controller is formulated in the backstepping framework based on the proposed ESO. Asymptotic tracking performance is theoretically achieved via closed-loop system stability analysis. The efficacy of the proposed control scheme is verified through comparative experiments executed on an EHA test rig. In this study, a priori bounds of the disturbances and their higher-order derivatives are no longer needed, and only one auxiliary error signal is introduced. This approach loosens the restrictions on the disturbances and reduces the design conservativeness, thus making it promising in practice.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312231189770","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is focused on asymptotic tracking control of electro-hydraulic actuator (EHA) systems subject to matched and mismatched time-varying disturbances. To counteract the matched disturbance, a novel extended state observer (ESO) is proposed to achieve asymptotic convergence of the estimation error, by incorporating the strictly positive real (SPR) Lyapunov design method and a Nussbaum function. To further suppress the mismatched disturbance, an adaptive robust integral of the sign of the error (RISE) controller is formulated in the backstepping framework based on the proposed ESO. Asymptotic tracking performance is theoretically achieved via closed-loop system stability analysis. The efficacy of the proposed control scheme is verified through comparative experiments executed on an EHA test rig. In this study, a priori bounds of the disturbances and their higher-order derivatives are no longer needed, and only one auxiliary error signal is introduced. This approach loosens the restrictions on the disturbances and reduces the design conservativeness, thus making it promising in practice.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.