Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil

IF 0.6 4区 农林科学 BOSQUE Pub Date : 2021-04-29 DOI:10.4067/S0717-92002021000100131
D. Dantas, M. Terra, L. P. B. Schorr, N. Calegário
{"title":"Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil","authors":"D. Dantas, M. Terra, L. P. B. Schorr, N. Calegário","doi":"10.4067/S0717-92002021000100131","DOIUrl":null,"url":null,"abstract":"The increasing awareness of global climate change has drawn attention to the role of forests as mitigators of this process as they act as carbon sinks to the atmosphere. Understanding the process of carbon storage in forests and its drivers, as well as presenting consistent models for their estimation, is a current demand. In this sense, the aim of this study was to evaluate the performance of machine learning techniques: support vector machines (SVM) and to propose a new nonlinear model extracted from the training of an artificial neural network (ANN) in the modeling of above ground carbon stock in a secondary semideciduous forest. SVM and ANN construction and training process considered independent variables selected by stepwise: minimum DBH (diameter of breast height - 1.3 m), maximum DBH, mean DBH, total height and number of trees, all by plot. SVM and the model extracted from ANN were applied to the data set intended for validation. Both techniques presented satisfactory performance in modeling carbon stock by plot, with homogeneous distribution and low dispersion of residues and predicted values close to those observed. Analysis criteria indicated superior performance of the model extracted from the artificial neural network, which presented a mean relative error of 6.94 %, while the support vector machine presented 13.52 %, combined with lower bias values and higher correlation between predictions and observations.","PeriodicalId":55338,"journal":{"name":"BOSQUE","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOSQUE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4067/S0717-92002021000100131","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The increasing awareness of global climate change has drawn attention to the role of forests as mitigators of this process as they act as carbon sinks to the atmosphere. Understanding the process of carbon storage in forests and its drivers, as well as presenting consistent models for their estimation, is a current demand. In this sense, the aim of this study was to evaluate the performance of machine learning techniques: support vector machines (SVM) and to propose a new nonlinear model extracted from the training of an artificial neural network (ANN) in the modeling of above ground carbon stock in a secondary semideciduous forest. SVM and ANN construction and training process considered independent variables selected by stepwise: minimum DBH (diameter of breast height - 1.3 m), maximum DBH, mean DBH, total height and number of trees, all by plot. SVM and the model extracted from ANN were applied to the data set intended for validation. Both techniques presented satisfactory performance in modeling carbon stock by plot, with homogeneous distribution and low dispersion of residues and predicted values close to those observed. Analysis criteria indicated superior performance of the model extracted from the artificial neural network, which presented a mean relative error of 6.94 %, while the support vector machine presented 13.52 %, combined with lower bias values and higher correlation between predictions and observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴西东南部热带森林碳储量预测的机器学习
对全球气候变化的认识日益提高,使人们注意到森林作为减缓这一进程的作用,因为它们是大气中的碳汇。了解森林中的碳储存过程及其驱动因素,并提出一致的估算模型,是当前的需求。从这个意义上说,本研究的目的是评估机器学习技术:支持向量机(SVM)的性能,并提出一种新的非线性模型,该模型提取自人工神经网络(ANN)的训练,用于次生半落叶森林地上碳储量的建模。支持向量机和人工神经网络的构建和训练过程考虑了逐步选择的自变量:最小胸径(胸径- 1.3 m)、最大胸径、平均胸径、总高度和树数,均按样地选取。将支持向量机和从人工神经网络中提取的模型应用于拟验证的数据集。两种方法在碳储量图建模中均表现出满意的效果,残差分布均匀,分散性低,预测值与实测值接近。分析标准表明,人工神经网络模型的平均相对误差为6.94%,而支持向量机模型的平均相对误差为13.52%,并且具有较低的偏差值和较高的预测与观测相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BOSQUE
BOSQUE Agricultural and Biological Sciences-Forestry
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍: BOSQUE publishes original works in the field of management and production of forestry resources, wood science and technology, silviculture, forestry ecology, natural resources conservation, and rural development associated with forest ecosystems. Contributions may be articles, rewiews, notes or opinions, Either in Spanish or English.
期刊最新文献
Presencia de la comadrejita trompuda (Rhyncholestes raphanurus) en la Cordillera de la Costa Valdiviana, Chile Diversidad, estructura y salud del arbolado en áreas verdes de la ciudad de Texcoco, México Disponibilidad a pagar en escenarios alternativos de mejora en el Parque Nacional El Chico, Hidalgo, México Aproximación paleobiogeográfica a la Sierra del Tablón (Serranía de Ronda, España) a partir del análisis pedoantracológico Crecimiento y desarrollo fotosintético de Swietenia mahagoni en sustratos inoculados con micorrizas arbusculares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1