U. Wandinger, M. Haarig, H. Baars, D. Donovan, Gerd-Jan van Zadelhoff
{"title":"Cloud top heights and aerosol layer properties from EarthCARE lidar observations: the A-CTH and A-ALD products","authors":"U. Wandinger, M. Haarig, H. Baars, D. Donovan, Gerd-Jan van Zadelhoff","doi":"10.5194/amt-16-4031-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The high-spectral-resolution Atmospheric Lidar (ATLID) on the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE)\nprovides vertically resolved information on aerosols and clouds with unprecedented accuracy. Together with the Cloud Profiling Radar (CPR), the Multi-Spectral Imager (MSI), and the Broad-Band Radiometer (BBR) on the same platform, it allows for a new synergistic view on atmospheric processes related to the interaction of aerosols, clouds, precipitation, and radiation at the global scale.\nThis paper describes the algorithms for the determination of cloud top height and aerosol layer information from ATLID Level 1b (L1b) and Level 2a (L2a) input data. The ATLID L2a Cloud Top Height (A-CTH) and Aerosol Layer Descriptor (A-ALD) products are developed to ensure the provision of atmospheric layer products in continuation of the heritage from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Moreover, the products serve as input for synergistic algorithms that make use of data from ATLID and MSI. Therefore, the products are provided on the EarthCARE joint standard grid (JSG).\nA wavelet covariance transform (WCT) method with flexible thresholds is applied to determine layer boundaries from the ATLID Mie co-polar signal.\nStrong features detected with a horizontal resolution of 1 JSG pixel (approximately 1 km) or 11 JSG pixels are classified as thick or thin clouds, respectively. The top height of the uppermost cloud layer together with information on cloud layering are stored in the A-CTH product for further use in the generation of the ATLID-MSI Cloud Top Height (AM-CTH) synergy product. Aerosol layers are detected as weaker features at a resolution of 11 JSG pixels. Layer-mean optical properties are calculated from the ATLID L2a Extinction, Backscatter and Depolarization (A-EBD) product and stored in the A-ALD product, which also contains the aerosol optical thickness (AOT) of each layer, the stratospheric AOT, and the AOT of the entire atmospheric column. The latter parameter is used to produce the synergistic ATLID-MSI Aerosol Column Descriptor (AM-ACD) later in the processing chain. Several quality criteria are applied in the generation of A-CTH and A-ALD, and respective information is stored in the products. The functionality and performance of the algorithms are demonstrated by applying them to common EarthCARE test scenes. Conclusions are drawn for the application to real-world data and the validation of the products after the launch of EarthCARE.\n","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-16-4031-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract. The high-spectral-resolution Atmospheric Lidar (ATLID) on the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE)
provides vertically resolved information on aerosols and clouds with unprecedented accuracy. Together with the Cloud Profiling Radar (CPR), the Multi-Spectral Imager (MSI), and the Broad-Band Radiometer (BBR) on the same platform, it allows for a new synergistic view on atmospheric processes related to the interaction of aerosols, clouds, precipitation, and radiation at the global scale.
This paper describes the algorithms for the determination of cloud top height and aerosol layer information from ATLID Level 1b (L1b) and Level 2a (L2a) input data. The ATLID L2a Cloud Top Height (A-CTH) and Aerosol Layer Descriptor (A-ALD) products are developed to ensure the provision of atmospheric layer products in continuation of the heritage from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Moreover, the products serve as input for synergistic algorithms that make use of data from ATLID and MSI. Therefore, the products are provided on the EarthCARE joint standard grid (JSG).
A wavelet covariance transform (WCT) method with flexible thresholds is applied to determine layer boundaries from the ATLID Mie co-polar signal.
Strong features detected with a horizontal resolution of 1 JSG pixel (approximately 1 km) or 11 JSG pixels are classified as thick or thin clouds, respectively. The top height of the uppermost cloud layer together with information on cloud layering are stored in the A-CTH product for further use in the generation of the ATLID-MSI Cloud Top Height (AM-CTH) synergy product. Aerosol layers are detected as weaker features at a resolution of 11 JSG pixels. Layer-mean optical properties are calculated from the ATLID L2a Extinction, Backscatter and Depolarization (A-EBD) product and stored in the A-ALD product, which also contains the aerosol optical thickness (AOT) of each layer, the stratospheric AOT, and the AOT of the entire atmospheric column. The latter parameter is used to produce the synergistic ATLID-MSI Aerosol Column Descriptor (AM-ACD) later in the processing chain. Several quality criteria are applied in the generation of A-CTH and A-ALD, and respective information is stored in the products. The functionality and performance of the algorithms are demonstrated by applying them to common EarthCARE test scenes. Conclusions are drawn for the application to real-world data and the validation of the products after the launch of EarthCARE.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.