Contextual in situ help for visual data interfaces

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Information Visualization Pub Date : 2022-09-09 DOI:10.1177/14738716221120064
Pramod Chundury, M. A. Yalçın, Jon Crabtree, A. Mahurkar, Lisa M Shulman, N. Elmqvist
{"title":"Contextual in situ help for visual data interfaces","authors":"Pramod Chundury, M. A. Yalçın, Jon Crabtree, A. Mahurkar, Lisa M Shulman, N. Elmqvist","doi":"10.1177/14738716221120064","DOIUrl":null,"url":null,"abstract":"As the complexity of data analysis increases, even well-designed data interfaces must guide experts in transforming their theoretical knowledge into actual features supported by the tool. This challenge is even greater for casual users who are increasingly turning to data analysis to solve everyday problems. To address this challenge, we propose data-driven, contextual, in situ help features that can be implemented in visual data interfaces. We introduce five modes of help-seeking: (1) contextual help on selected interface elements, (2) topic listing, (3) overview, (4) guided tour, and (5) notifications. The difference between our work and general user interface help systems is that data visualization provide a unique environment for embedding context-dependent data inside on-screen messaging. We demonstrate the usefulness of such contextual help through two case studies of two visual data interfaces: Keshif and POD-Vis. We implemented and evaluated the help modes with two sets of participants, and found that directly selecting user interface elements was the most useful.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":"22 1","pages":"69 - 84"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716221120064","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

As the complexity of data analysis increases, even well-designed data interfaces must guide experts in transforming their theoretical knowledge into actual features supported by the tool. This challenge is even greater for casual users who are increasingly turning to data analysis to solve everyday problems. To address this challenge, we propose data-driven, contextual, in situ help features that can be implemented in visual data interfaces. We introduce five modes of help-seeking: (1) contextual help on selected interface elements, (2) topic listing, (3) overview, (4) guided tour, and (5) notifications. The difference between our work and general user interface help systems is that data visualization provide a unique environment for embedding context-dependent data inside on-screen messaging. We demonstrate the usefulness of such contextual help through two case studies of two visual data interfaces: Keshif and POD-Vis. We implemented and evaluated the help modes with two sets of participants, and found that directly selecting user interface elements was the most useful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可视化数据接口的上下文原位帮助
随着数据分析的复杂性增加,即使是设计良好的数据接口也必须指导专家将他们的理论知识转化为工具支持的实际功能。对于那些越来越多地转向数据分析来解决日常问题的普通用户来说,这一挑战甚至更大。为了应对这一挑战,我们提出了数据驱动的、上下文相关的、可在可视化数据界面中实现的原位帮助特性。我们介绍了五种求助模式:(1)选定界面元素的上下文帮助,(2)主题列表,(3)概述,(4)导览,(5)通知。我们的工作与一般用户界面帮助系统的不同之处在于,数据可视化为在屏幕消息传递中嵌入上下文相关的数据提供了一个独特的环境。我们通过两个可视化数据接口的两个案例研究来证明这种上下文帮助的有用性:keshiif和POD-Vis。我们用两组参与者实现并评估了帮助模式,发现直接选择用户界面元素是最有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Visualization
Information Visualization COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.40
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications. The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Multidimensional data visualization and synchronization for revealing hidden pandemic information Interactive visual formula composition of multidimensional data classifiers Exploring annotation taxonomy in grouped bar charts: A qualitative classroom study Designing complex network visualisations using the wayfinding map metaphor Graph & Network Visualization and Beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1