Effect of HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 Catalyst on The Cracking of Palm Oil

Alda Titania Dewanti, Rismawati Rasyid, R. Kalla
{"title":"Effect of HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 Catalyst on The Cracking of Palm Oil","authors":"Alda Titania Dewanti, Rismawati Rasyid, R. Kalla","doi":"10.15408/jkv.v8i2.25774","DOIUrl":null,"url":null,"abstract":"Fuel oil has a deficit every year. Therefore, a substitute fuel is needed, which can be obtained more efficiently. One of the alternative fuels that have been widely researched is biofuel. Catalytic cracking is a method of producing biofuels such as biogasoline (C5-C9), bioavtur (C10-C15) and green diesel (C16-C22). This research aims to produce biofuels by catalytic cracking of palm oil using HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 catalysts (1, 3, 5 and 7%). The catalyst was prepared by wet impregnation and characterized by x-ray diffraction, Brunauer Emmett teller and ASTM-D664. The reaction cracking process was operated at a constant temperature of 370 °C, 50 ml volume, and 1 atm pressure. The best catalyst for cracking palm oil is HCl/Ni/γ-Al2O3 (5%) with a yield of 81%, selectivity to biogasoline at 6.41%, bioavtur at 33.81%, and green diesel at 20.33%.","PeriodicalId":17786,"journal":{"name":"Jurnal Kimia Valensi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Valensi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jkv.v8i2.25774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fuel oil has a deficit every year. Therefore, a substitute fuel is needed, which can be obtained more efficiently. One of the alternative fuels that have been widely researched is biofuel. Catalytic cracking is a method of producing biofuels such as biogasoline (C5-C9), bioavtur (C10-C15) and green diesel (C16-C22). This research aims to produce biofuels by catalytic cracking of palm oil using HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 catalysts (1, 3, 5 and 7%). The catalyst was prepared by wet impregnation and characterized by x-ray diffraction, Brunauer Emmett teller and ASTM-D664. The reaction cracking process was operated at a constant temperature of 370 °C, 50 ml volume, and 1 atm pressure. The best catalyst for cracking palm oil is HCl/Ni/γ-Al2O3 (5%) with a yield of 81%, selectivity to biogasoline at 6.41%, bioavtur at 33.81%, and green diesel at 20.33%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HCl/γ-Al2O3和HCl/Ni/γ-Al2O3催化剂对棕榈油裂解的影响
燃料油每年都有赤字。因此,需要一种可以更有效地获得的替代燃料。生物燃料是一种被广泛研究的替代燃料。催化裂化是一种生产生物燃料的方法,如生物汽油(C5-C9)、生物燃料(C10-C15)和绿色柴油(C16-C22)。本研究旨在利用HCl/γ-Al2O3和HCl/Ni/γ-Al2O3催化剂(1,3,5和7%)催化棕榈油裂解生产生物燃料。采用湿浸渍法制备催化剂,并用x射线衍射、Brunauer Emmett teller和ASTM-D664对催化剂进行了表征。反应裂解过程在恒温370℃,体积50 ml,压力1 atm条件下进行。裂化棕榈油的最佳催化剂为HCl/Ni/γ-Al2O3(5%),产率为81%,生物汽油的选择性为6.41%,生物柴油的选择性为33.81%,绿色柴油的选择性为20.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
15
审稿时长
24 weeks
期刊最新文献
The Potential Effect of Honey-derived D-Allulose in Counteracting Hyperglycemia by Time and Dose Dependent Manner in Diabetes Mellitus Synthesis and Cytotoxic Evaluation of 3-Dimethyl Carbamoyl Emodin Green Metrics Evaluation on The Cannizzaro Reaction of p-Anisaldehyde and Benzaldehyde Under Solvent-Free Conditions Exploration The Candidates of Xenobiotic Degrading Indigenous Bacteria from Probolinggo City Landfill by Using Next Generation Sequencing (NGS) Sesquiterpenoids from the stem bark of Aglaia pachyphylla Miq (Meliaceae) and cytotoxic activity against MCF-7 Cancer Cell Line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1