Ridha Benadli, D. Frey, Y. Lembeye, Marwen Bjaoui, B. Khiari, A. Sellami
{"title":"A direct backstepping super-twisting algorithm controller MPPT for a standalone PV storage system: design and real-time implementation","authors":"Ridha Benadli, D. Frey, Y. Lembeye, Marwen Bjaoui, B. Khiari, A. Sellami","doi":"10.1115/1.4062096","DOIUrl":null,"url":null,"abstract":"\n In this paper, we introduce a novel direct maximum power point tracking (MPPT) approach that combines the backstepping controller (BC) and the super-twisting algorithm (STA). The direct backstepping super-twisting algorithm control (BSSTAC) MPPT was developed to extract the maximum power point (MPP) produced by a photovoltaic (PV) generator connected to the battery through a boost dc-dc converter. To reduce the number of sensors required for the BSSTAC implementation, a high gain observer (HGO) was proposed to estimate the value of the state of the PV storage system from measurements of the PV generator voltage and current. The suggested technique is based on the quadratic Lyapunov function and does not employ a standard MPPT algorithm. Results show that the suggested control scheme has good tracking performance with reduced overshoot, chattering, and settling time as compared to the prevalent MPPT tracking algorithms such as perturb and observe (P&O), conventional sliding mode control (CSMC), backstepping controller (BSC), and integral backstepping controller (IBSC). Finally, real-time findings using the dSPACE DS 1104 software indicate that the generator PV can accurately forecast the MPP, as well as the efficacy of the suggested MPPT technique. The provided approach's effectiveness has been validated by a comprehensive comparison with different methods, resulting in the greatest efficiency of 99.88% for BSSTAC.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062096","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a novel direct maximum power point tracking (MPPT) approach that combines the backstepping controller (BC) and the super-twisting algorithm (STA). The direct backstepping super-twisting algorithm control (BSSTAC) MPPT was developed to extract the maximum power point (MPP) produced by a photovoltaic (PV) generator connected to the battery through a boost dc-dc converter. To reduce the number of sensors required for the BSSTAC implementation, a high gain observer (HGO) was proposed to estimate the value of the state of the PV storage system from measurements of the PV generator voltage and current. The suggested technique is based on the quadratic Lyapunov function and does not employ a standard MPPT algorithm. Results show that the suggested control scheme has good tracking performance with reduced overshoot, chattering, and settling time as compared to the prevalent MPPT tracking algorithms such as perturb and observe (P&O), conventional sliding mode control (CSMC), backstepping controller (BSC), and integral backstepping controller (IBSC). Finally, real-time findings using the dSPACE DS 1104 software indicate that the generator PV can accurately forecast the MPP, as well as the efficacy of the suggested MPPT technique. The provided approach's effectiveness has been validated by a comprehensive comparison with different methods, resulting in the greatest efficiency of 99.88% for BSSTAC.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.