Multistage DPIRef-Net: An effective network for semantic segmentation of arteries and veins from retinal surface

Geetha Pavani , Birendra Biswal , Tapan Kumar Gandhi
{"title":"Multistage DPIRef-Net: An effective network for semantic segmentation of arteries and veins from retinal surface","authors":"Geetha Pavani ,&nbsp;Birendra Biswal ,&nbsp;Tapan Kumar Gandhi","doi":"10.1016/j.neuri.2022.100074","DOIUrl":null,"url":null,"abstract":"<div><p>Retinal vascular changes are the early indicators for many progressive diseases like diabetes, hypertension, etc. However, the manual procedure in detecting these vascular changes is a time-consuming process and may cause a large variance, especially when dealing with a large dataset. Therefore, computer-aided diagnosis of the retinal vascular network plays a crucial role in analyzing the patients effectively with high precision. As a result, this paper presents a robust deep learning Multistage Dual-Path Interactive Refinement Network (DPIRef-Net) for segmenting the vascular maps of arteries and veins from the retinal surface. The main novelty of the proposed model lies in segmenting both the regional and edge salient feature maps that will reduce the degeneration problems of pooling and striding. This eventually preserves the edges of vascular branches and suppresses the false positive rate. In addition to this, a novel guided filtering technique is employed to segment the final accurate arteries and veins vascular networks from predicted regional and edge feature maps. The proposed Multistage DPIRef-Net is trained and tested on different benchmark datasets like DRIVE, HRF, AVRDB, INSPIRE AVR, VICAVR, and Dual-Mode datasets. The proposed model illustrated superior performance in segmenting the vascular maps on all datasets by achieving an average accuracy of 97%, a sensitivity of 96%, a specificity of 98%, and a dice coefficient of 98%.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 4","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277252862200036X/pdfft?md5=839ffed6723996f2137045b3dcb4cd99&pid=1-s2.0-S277252862200036X-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862200036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Retinal vascular changes are the early indicators for many progressive diseases like diabetes, hypertension, etc. However, the manual procedure in detecting these vascular changes is a time-consuming process and may cause a large variance, especially when dealing with a large dataset. Therefore, computer-aided diagnosis of the retinal vascular network plays a crucial role in analyzing the patients effectively with high precision. As a result, this paper presents a robust deep learning Multistage Dual-Path Interactive Refinement Network (DPIRef-Net) for segmenting the vascular maps of arteries and veins from the retinal surface. The main novelty of the proposed model lies in segmenting both the regional and edge salient feature maps that will reduce the degeneration problems of pooling and striding. This eventually preserves the edges of vascular branches and suppresses the false positive rate. In addition to this, a novel guided filtering technique is employed to segment the final accurate arteries and veins vascular networks from predicted regional and edge feature maps. The proposed Multistage DPIRef-Net is trained and tested on different benchmark datasets like DRIVE, HRF, AVRDB, INSPIRE AVR, VICAVR, and Dual-Mode datasets. The proposed model illustrated superior performance in segmenting the vascular maps on all datasets by achieving an average accuracy of 97%, a sensitivity of 96%, a specificity of 98%, and a dice coefficient of 98%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多级DPIRef-Net:一种有效的视网膜表面动静脉语义分割网络
视网膜血管改变是许多进行性疾病如糖尿病、高血压等的早期指标。然而,人工检测这些血管变化是一个耗时的过程,可能会导致很大的差异,特别是在处理大型数据集时。因此,视网膜血管网络的计算机辅助诊断对于有效、高精度地分析患者具有至关重要的作用。因此,本文提出了一种鲁棒的深度学习多阶段双路径交互细化网络(DPIRef-Net),用于从视网膜表面分割动脉和静脉的血管图。该模型的主要新颖之处在于对区域和边缘显著特征图进行分割,减少了池化和跨步的退化问题。这最终保留了血管分支的边缘,并抑制了假阳性率。此外,采用一种新的引导滤波技术,从预测的区域和边缘特征图中分割出最终准确的动脉和静脉血管网络。提出的Multistage DPIRef-Net在不同的基准数据集(如DRIVE、HRF、AVRDB、INSPIRE AVR、VICAVR和Dual-Mode数据集)上进行了训练和测试。该模型在所有数据集上的血管图分割表现优异,平均准确率为97%,灵敏度为96%,特异性为98%,骰子系数为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory Exploring age-related functional brain changes during audio-visual integration tasks in early to mid-adulthood Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1