Formation and Photophysical Properties of Silver Clusters in Bulk of Photo-Thermo-Refractive Glass

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-07-13 DOI:10.3390/ceramics6030096
L. Mironov, D. Marasanov, M. D. Sannikova, K. Zyryanova, Artem A. Slobozhaninov, I. Kolesnikov
{"title":"Formation and Photophysical Properties of Silver Clusters in Bulk of Photo-Thermo-Refractive Glass","authors":"L. Mironov, D. Marasanov, M. D. Sannikova, K. Zyryanova, Artem A. Slobozhaninov, I. Kolesnikov","doi":"10.3390/ceramics6030096","DOIUrl":null,"url":null,"abstract":"The bright luminescence of silver clusters in glass have potential applications in solid-state lighting, optical memory, and spectral converters. In this work, luminescent silver clusters were formed in the bulk of photo-thermo-refractive glass (15Na2O-5ZnO-2.9Al2O3-70.3SiO2-6.5F, mol.%) doped with different Ag2O concentrations from 0.01 to 0.05 mol.%. The spontaneous formation of plasmonic nanoparticles during glass synthesis was observed at 0.05 mol.% of Ag2O in the glass composition, limiting the silver concentration range for cluster formation. The luminescence of silver clusters was characterized by steady-state and time-resolved spectroscopy techniques. The rate constants of fluorescence, phosphorescence, intersystem crossing, and nonradiative deactivation were estimated on the basis of an experimental study. A comparison of the results obtained for the photophysical properties of luminescent silver clusters formed in the ion-exchanged layers of photo-thermo-refractive glass is provided.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6030096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The bright luminescence of silver clusters in glass have potential applications in solid-state lighting, optical memory, and spectral converters. In this work, luminescent silver clusters were formed in the bulk of photo-thermo-refractive glass (15Na2O-5ZnO-2.9Al2O3-70.3SiO2-6.5F, mol.%) doped with different Ag2O concentrations from 0.01 to 0.05 mol.%. The spontaneous formation of plasmonic nanoparticles during glass synthesis was observed at 0.05 mol.% of Ag2O in the glass composition, limiting the silver concentration range for cluster formation. The luminescence of silver clusters was characterized by steady-state and time-resolved spectroscopy techniques. The rate constants of fluorescence, phosphorescence, intersystem crossing, and nonradiative deactivation were estimated on the basis of an experimental study. A comparison of the results obtained for the photophysical properties of luminescent silver clusters formed in the ion-exchanged layers of photo-thermo-refractive glass is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光热折射玻璃中银团簇的形成及其光物理性质
玻璃中银团簇的明亮发光在固态照明、光存储器和光谱转换器方面具有潜在的应用前景。在本研究中,在Ag2O掺杂浓度为0.01 ~ 0.05 mol.%的光热折射玻璃(15Na2O-5ZnO-2.9Al2O3-70.3SiO2-6.5F, mol.%)中形成了发光的银团簇。当Ag2O含量为0.05 mol.%时,等离子体纳米粒子在玻璃合成过程中自发形成,限制了形成团簇的银浓度范围。用稳态和时间分辨光谱技术对银团簇的发光特性进行了表征。在实验研究的基础上估计了荧光、磷光、系统间交叉和非辐射失活的速率常数。本文还比较了在光热折射玻璃的离子交换层中形成的发光银团簇的光物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1