{"title":"Breaking Our Silence on Factor Score Indeterminacy","authors":"N. Waller","doi":"10.3102/10769986221128810","DOIUrl":null,"url":null,"abstract":"Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of factor scores can be constructed to fit the model. Because all sets are mathematically exchangeable, factor scores are indeterminate. Our professional silence on this topic is difficult to explain given that FSI was first noted almost 100 years ago by E. B. Wilson, the 24th president (1929) of the American Statistical Association. To help disseminate Wilson’s insights, we demonstrate the underlying mathematics of FSI using the language of finite-dimensional vector spaces and well-known ideas of regression theory. We then illustrate the numerical implications of FSI by describing new and easily implemented methods for transforming factor scores into alternative sets of factor scores. An online supplement (and the fungible R library) includes R functions for illustrating FSI.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"48 1","pages":"244 - 261"},"PeriodicalIF":1.9000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221128810","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 2
Abstract
Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of factor scores can be constructed to fit the model. Because all sets are mathematically exchangeable, factor scores are indeterminate. Our professional silence on this topic is difficult to explain given that FSI was first noted almost 100 years ago by E. B. Wilson, the 24th president (1929) of the American Statistical Association. To help disseminate Wilson’s insights, we demonstrate the underlying mathematics of FSI using the language of finite-dimensional vector spaces and well-known ideas of regression theory. We then illustrate the numerical implications of FSI by describing new and easily implemented methods for transforming factor scores into alternative sets of factor scores. An online supplement (and the fungible R library) includes R functions for illustrating FSI.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.