Sjawal Arshad , Muhammad Babar Khawar , Ali Hassan , Ali Afzal , Abdullah Muhammad Sohail , Maryam Mukhtar , Muddasir Hassan Abbasi , Nadeem Sheikh , Arwa Azam , Sara Shahzaman , Syeda Eisha Hamid
{"title":"Cell free DNA; diagnostic and prognostic approaches to oncology","authors":"Sjawal Arshad , Muhammad Babar Khawar , Ali Hassan , Ali Afzal , Abdullah Muhammad Sohail , Maryam Mukhtar , Muddasir Hassan Abbasi , Nadeem Sheikh , Arwa Azam , Sara Shahzaman , Syeda Eisha Hamid","doi":"10.1016/j.adcanc.2022.100052","DOIUrl":null,"url":null,"abstract":"<div><p>Cell-free DNA (cfDNA) are un-encapsulated DNA fragments present in biological fluids ranging in an average size of up to 200 base pairs. The novel use of cfDNA is a prime candidate in the diagnostic and prognostic approach to unveiling many inflammatory diseases, especially cancer. Moreover, their potential as biomarkers is due to their ubiquitous presence in the body, non-invasive nature, and aiding in a different autopsy method. This review will focus on the diagnostic and prognostic potential of cfDNA as non-invasive biomarkers in oncology.</p></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"5 ","pages":"Article 100052"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667394022000260/pdfft?md5=1eaa71b4ad940cc52c414d1c6b2664ae&pid=1-s2.0-S2667394022000260-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer biology - metastasis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667394022000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Cell-free DNA (cfDNA) are un-encapsulated DNA fragments present in biological fluids ranging in an average size of up to 200 base pairs. The novel use of cfDNA is a prime candidate in the diagnostic and prognostic approach to unveiling many inflammatory diseases, especially cancer. Moreover, their potential as biomarkers is due to their ubiquitous presence in the body, non-invasive nature, and aiding in a different autopsy method. This review will focus on the diagnostic and prognostic potential of cfDNA as non-invasive biomarkers in oncology.