Chaotic systems learning with hybrid echo state network/proper orthogonal decomposition based model

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2021-10-13 DOI:10.1017/dce.2021.17
Mathias Lesjak, N. Doan
{"title":"Chaotic systems learning with hybrid echo state network/proper orthogonal decomposition based model","authors":"Mathias Lesjak, N. Doan","doi":"10.1017/dce.2021.17","DOIUrl":null,"url":null,"abstract":"Abstract We explore the possibility of combining a knowledge-based reduced order model (ROM) with a reservoir computing approach to learn and predict the dynamics of chaotic systems. The ROM is based on proper orthogonal decomposition (POD) with Galerkin projection to capture the essential dynamics of the chaotic system while the reservoir computing approach used is based on echo state networks (ESNs). Two different hybrid approaches are explored: one where the ESN corrects the modal coefficients of the ROM (hybrid-ESN-A) and one where the ESN uses and corrects the ROM prediction in full state space (hybrid-ESN-B). These approaches are applied on two chaotic systems: the Charney–DeVore system and the Kuramoto–Sivashinsky equation and are compared to the ROM obtained using POD/Galerkin projection and to the data-only approach based uniquely on the ESN. The hybrid-ESN-B approach is seen to provide the best prediction accuracy, outperforming the other hybrid approach, the POD/Galerkin projection ROM, and the data-only ESN, especially when using ESNs with a small number of neurons. In addition, the influence of the accuracy of the ROM on the overall prediction accuracy of the hybrid-ESN-B is assessed rigorously by considering ROMs composed of different numbers of POD modes. Further analysis on how hybrid-ESN-B blends the prediction from the ROM and the ESN to predict the evolution of the system is also provided.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2021.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We explore the possibility of combining a knowledge-based reduced order model (ROM) with a reservoir computing approach to learn and predict the dynamics of chaotic systems. The ROM is based on proper orthogonal decomposition (POD) with Galerkin projection to capture the essential dynamics of the chaotic system while the reservoir computing approach used is based on echo state networks (ESNs). Two different hybrid approaches are explored: one where the ESN corrects the modal coefficients of the ROM (hybrid-ESN-A) and one where the ESN uses and corrects the ROM prediction in full state space (hybrid-ESN-B). These approaches are applied on two chaotic systems: the Charney–DeVore system and the Kuramoto–Sivashinsky equation and are compared to the ROM obtained using POD/Galerkin projection and to the data-only approach based uniquely on the ESN. The hybrid-ESN-B approach is seen to provide the best prediction accuracy, outperforming the other hybrid approach, the POD/Galerkin projection ROM, and the data-only ESN, especially when using ESNs with a small number of neurons. In addition, the influence of the accuracy of the ROM on the overall prediction accuracy of the hybrid-ESN-B is assessed rigorously by considering ROMs composed of different numbers of POD modes. Further analysis on how hybrid-ESN-B blends the prediction from the ROM and the ESN to predict the evolution of the system is also provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合回波状态网络/适当正交分解模型的混沌系统学习
摘要我们探索了将基于知识的降阶模型(ROM)与储层计算方法相结合来学习和预测混沌系统动力学的可能性。ROM基于具有Galerkin投影的适当正交分解(POD)来捕捉混沌系统的基本动力学,而所使用的储层计算方法基于回波状态网络(ESN)。探索了两种不同的混合方法:一种是ESN校正ROM的模态系数(hybrid-ESN-A),另一种是在全状态空间中使用并校正ROM预测(hybrid-ESN-B)。这些方法应用于两个混沌系统:Charney–DeVore系统和Kuramoto–Sivashinsky方程,并与使用POD/Galerkin投影获得的ROM和唯一基于ESN的纯数据方法进行了比较。混合-ESN-B方法被认为提供了最佳的预测精度,优于其他混合方法、POD/Galerkin投影ROM和仅数据ESN,尤其是当使用具有少量神经元的ESN时。此外,通过考虑由不同数量的POD模式组成的ROM,严格评估ROM的准确性对杂交-ESN-B的总体预测准确性的影响。还提供了关于hybrid-ESN-B如何混合来自ROM和ESN的预测以预测系统的进化的进一步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1