{"title":"Non-contact detection of single-cell lead-acid battery electrodes’ defects through conductivity reconstruction by magnetic induction tomography","authors":"Shujian Tang, Guogang Zhang, Lijia Ge, Zhengxiang Song, Yingsan Geng, Jianhua Wang","doi":"10.1080/17415977.2021.1918127","DOIUrl":null,"url":null,"abstract":"The change of electrodes’ conductivity is a crucial parameter during battery aging process, non-contact detection of battery electrodes’ defects through conductivity reconstruction is an innovative technology. In this paper, the magnetic induction tomography (MIT) was applied to reconstruct the conductivity of electrodes, the simplified battery models with complete and broken electrodes were chosen as target A and target Brespectively, and an eight-channel MIT system was designed to measure the change of mutual induced voltage. A method of computing the forward problem called ‘A·E’ was adopted to compute the coefficient matrix for the forward problem and the frequency 12.665kHz was chosen as the excitation frequency. Based on the conductivity reconstruction images, relative errors of reconstructed conductivity and objective function, ‘A·E’ method exhibited advantages in terms of computation time and accuracy compared to coefficient sensitivity method with the simulation data. In order to test the accuracy of ‘A·E’ method, data measured by MIT system was applied in the inverse problem with four regularization parameter selection methods. L-curve criterion and generalized cross-validation criterion identified defects successfully as they were more sensitive to the change of conductivity.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"2470 - 2490"},"PeriodicalIF":1.1000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1918127","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1918127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The change of electrodes’ conductivity is a crucial parameter during battery aging process, non-contact detection of battery electrodes’ defects through conductivity reconstruction is an innovative technology. In this paper, the magnetic induction tomography (MIT) was applied to reconstruct the conductivity of electrodes, the simplified battery models with complete and broken electrodes were chosen as target A and target Brespectively, and an eight-channel MIT system was designed to measure the change of mutual induced voltage. A method of computing the forward problem called ‘A·E’ was adopted to compute the coefficient matrix for the forward problem and the frequency 12.665kHz was chosen as the excitation frequency. Based on the conductivity reconstruction images, relative errors of reconstructed conductivity and objective function, ‘A·E’ method exhibited advantages in terms of computation time and accuracy compared to coefficient sensitivity method with the simulation data. In order to test the accuracy of ‘A·E’ method, data measured by MIT system was applied in the inverse problem with four regularization parameter selection methods. L-curve criterion and generalized cross-validation criterion identified defects successfully as they were more sensitive to the change of conductivity.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.