Novel Reconfigurable Hardware Systems for Tumor Growth Prediction

Konstantinos Malavazos, M. Papadogiorgaki, Pavlos Malakonakis, I. Papaefstathiou
{"title":"Novel Reconfigurable Hardware Systems for Tumor Growth Prediction","authors":"Konstantinos Malavazos, M. Papadogiorgaki, Pavlos Malakonakis, I. Papaefstathiou","doi":"10.1145/3454126","DOIUrl":null,"url":null,"abstract":"An emerging trend in biomedical systems research is the development of models that take full advantage of the increasing available computational power to manage and analyze new biological data as well as to model complex biological processes. Such biomedical models require significant computational resources, since they process and analyze large amounts of data, such as medical image sequences. We present a family of advanced computational models for the prediction of the spatio-temporal evolution of glioma and their novel implementation in state-of-the-art FPGA devices. Glioma is a rapidly evolving type of brain cancer, well known for its aggressive and diffusive behavior. The developed system simulates the glioma tumor growth in the brain tissue, which consists of different anatomic structures, by utilizing MRI slices. The presented models have been proved highly accurate in predicting the growth of the tumor, whereas the developed innovative hardware system, when implemented on a low-end, low-cost FPGA, is up to 85% faster than a high-end server consisting of 20 physical cores (and 40 virtual ones) and more than 28× more energy-efficient than it; the energy efficiency grows up to 50× and the speedup up to 14× if the presented designs are implemented in a high-end FPGA. Moreover, the proposed reconfigurable system, when implemented in a large FPGA, is significantly faster than a high-end GPU (i.e., from 80% and up to 250% faster), for the majority of the models, while it is also significantly better (i.e., from 80% to over 1,600%) in terms of power efficiency, for all the implemented models.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 27"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3454126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3454126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An emerging trend in biomedical systems research is the development of models that take full advantage of the increasing available computational power to manage and analyze new biological data as well as to model complex biological processes. Such biomedical models require significant computational resources, since they process and analyze large amounts of data, such as medical image sequences. We present a family of advanced computational models for the prediction of the spatio-temporal evolution of glioma and their novel implementation in state-of-the-art FPGA devices. Glioma is a rapidly evolving type of brain cancer, well known for its aggressive and diffusive behavior. The developed system simulates the glioma tumor growth in the brain tissue, which consists of different anatomic structures, by utilizing MRI slices. The presented models have been proved highly accurate in predicting the growth of the tumor, whereas the developed innovative hardware system, when implemented on a low-end, low-cost FPGA, is up to 85% faster than a high-end server consisting of 20 physical cores (and 40 virtual ones) and more than 28× more energy-efficient than it; the energy efficiency grows up to 50× and the speedup up to 14× if the presented designs are implemented in a high-end FPGA. Moreover, the proposed reconfigurable system, when implemented in a large FPGA, is significantly faster than a high-end GPU (i.e., from 80% and up to 250% faster), for the majority of the models, while it is also significantly better (i.e., from 80% to over 1,600%) in terms of power efficiency, for all the implemented models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肿瘤生长预测的新型可重构硬件系统
生物医学系统研究的一个新兴趋势是开发模型,充分利用日益增长的可用计算能力来管理和分析新的生物数据以及模拟复杂的生物过程。这种生物医学模型需要大量的计算资源,因为它们需要处理和分析大量数据,例如医学图像序列。我们提出了一系列先进的计算模型,用于预测胶质瘤的时空演变,并在最先进的FPGA器件中实现。胶质瘤是一种快速发展的脑癌,以其侵袭性和弥漫性行为而闻名。该系统利用MRI切片模拟由不同解剖结构组成的脑组织中胶质瘤的生长。所提出的模型已被证明在预测肿瘤生长方面具有很高的准确性,而所开发的创新硬件系统,当在低端,低成本的FPGA上实现时,比由20个物理内核(和40个虚拟内核)组成的高端服务器快85%,并且比其节能28倍以上;如果在高端FPGA中实现,则能效可提高50倍,加速可提高14倍。此外,所提出的可重构系统,当在大型FPGA中实现时,对于大多数模型来说,比高端GPU要快得多(即从80%到高达250%的速度),而对于所有实现的模型来说,在功率效率方面也明显更好(即从80%到超过1600%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1