Automated geometry and hexahedral mesh generation for kilometer-scale atmospheric flow simulations

Q4 Engineering Rakenteiden Mekaniikka Pub Date : 2023-02-13 DOI:10.23998/rm.119848
E. Immonen, Dennis Bengs, Mikael Manngård, Johan Westö
{"title":"Automated geometry and hexahedral mesh generation for kilometer-scale atmospheric flow simulations","authors":"E. Immonen, Dennis Bengs, Mikael Manngård, Johan Westö","doi":"10.23998/rm.119848","DOIUrl":null,"url":null,"abstract":"This article introduces a methodology for automatic generation of geometries and meshes for kilometer-scale Atmospheric Boundary Layer (ABL) flow simulations, with topography and elevation. The proposed programmatic (hence automatable) \\emph{template morphing approach} facilitates interpolation of scattered point cloud terrain data on a template geometry domain, morphing a high-quality quadrilateral template mesh for the interpolated geometry, and setup as well as execution of Computational Fluid Dynamics (CFD) flow simulation. The proposed method specifically addresses the previously reported problems of sustaining an ABL structure across the simulation domain by imposing the velocity and turbulence properties on all vertical surfaces. We present a validation study for the proposed method on an artificial Gaussian hill terrain. A real-world localized wind forecast application from the Turku Archipelago, Finland, is also presented, using open terrain data from National Land Survey of Finland. Such localized wind forecasts aim to assist ships in autonomous navigation and maneuvering in complex port or fairway environments, which is the motivation for this study.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/rm.119848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a methodology for automatic generation of geometries and meshes for kilometer-scale Atmospheric Boundary Layer (ABL) flow simulations, with topography and elevation. The proposed programmatic (hence automatable) \emph{template morphing approach} facilitates interpolation of scattered point cloud terrain data on a template geometry domain, morphing a high-quality quadrilateral template mesh for the interpolated geometry, and setup as well as execution of Computational Fluid Dynamics (CFD) flow simulation. The proposed method specifically addresses the previously reported problems of sustaining an ABL structure across the simulation domain by imposing the velocity and turbulence properties on all vertical surfaces. We present a validation study for the proposed method on an artificial Gaussian hill terrain. A real-world localized wind forecast application from the Turku Archipelago, Finland, is also presented, using open terrain data from National Land Survey of Finland. Such localized wind forecasts aim to assist ships in autonomous navigation and maneuvering in complex port or fairway environments, which is the motivation for this study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动几何和六面体网格生成的公里尺度大气流动模拟
本文介绍了一种自动生成几何图形和网格的方法,用于公里级大气边界层(ABL)流动模拟,包括地形和高程。所提出的程序化(因此是可自动化的)\emph{模板变形方法}有助于在模板几何域上对分散的点云地形数据进行插值,为插值几何体变形高质量的四边形模板网格,以及计算流体动力学(CFD)流模拟的设置和执行。所提出的方法通过在所有垂直表面上施加速度和湍流特性,专门解决了先前报道的在模拟域中维持ABL结构的问题。我们在人工高斯丘陵地形上对所提出的方法进行了验证研究。还介绍了芬兰图尔库群岛的真实世界本地化风力预测应用程序,该应用程序使用了芬兰国家土地调查局的开放地形数据。这种本地化的风力预报旨在帮助船舶在复杂的港口或航道环境中自主导航和操纵,这就是本研究的动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rakenteiden Mekaniikka
Rakenteiden Mekaniikka Engineering-Mechanical Engineering
CiteScore
0.50
自引率
0.00%
发文量
2
审稿时长
16 weeks
期刊最新文献
Numerical investigation of box shape effects on soil direct shear test Evaluation of machine learning techniques for capacity prediction of cold-formed steel beams subjected to bending Djebar Baroudin muistoa kunnioittaen Jari Laukkasen muistoa kunnioittaen Tekninen selvitys: Tarkkoja elementtejä helposti
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1