Prediction of the ribbon length to determine the viscosity of ladle-refining powder containing CaF2 using inclined plane test and advanced mathematical model
Mohammad Kuwaiti, A. Alaei, Mehdi Mansouri Hasan Abadi, Reza Ebrahimi Kahrizsangi, H. Ghayour
{"title":"Prediction of the ribbon length to determine the viscosity of ladle-refining powder containing CaF2 using inclined plane test and advanced mathematical model","authors":"Mohammad Kuwaiti, A. Alaei, Mehdi Mansouri Hasan Abadi, Reza Ebrahimi Kahrizsangi, H. Ghayour","doi":"10.1080/03019233.2023.2184988","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present research, the inclined plane test (IPT) and an author-developed advanced mathematical model were used to determine the viscosity of ladle-refining + CaF2 powder containing 3–10% CaF2 (LRC powder). The ladle slag powder is composed of such compounds as CaO, Al2O3, SiO2 containing percentages of CaF2 to make special changes to the chemical and physical properties of the compound. The procedure for determination of the viscosity obtained by IPT method was supported using a high-temperature viscometer. The results showed that the ribbon lengths of LRC powder obtained by using the IPT method were related to an Arrhenius relationship of viscosity. Furthermore, from the advanced mathematical relationships, it was found that there is a very close relationship between the oxygen-to-silicon molar ratio (O/Si), basic/acidic oxide molar ratio (B/A), the number of non-bridging oxygen per tetrahedrally-coordinated atoms (NBO/T), and the chemical compositions of LRC powder. Hence, the advanced mathematical relationships from the software output, and Statistical Package for the Social Sciences (SPSS), were used to determine the prediction model of the viscosity of LRC powder based on its chemical composition. This model had a very good correlation with the actual values obtained.","PeriodicalId":14753,"journal":{"name":"Ironmaking & Steelmaking","volume":"50 1","pages":"1241 - 1247"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ironmaking & Steelmaking","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/03019233.2023.2184988","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In the present research, the inclined plane test (IPT) and an author-developed advanced mathematical model were used to determine the viscosity of ladle-refining + CaF2 powder containing 3–10% CaF2 (LRC powder). The ladle slag powder is composed of such compounds as CaO, Al2O3, SiO2 containing percentages of CaF2 to make special changes to the chemical and physical properties of the compound. The procedure for determination of the viscosity obtained by IPT method was supported using a high-temperature viscometer. The results showed that the ribbon lengths of LRC powder obtained by using the IPT method were related to an Arrhenius relationship of viscosity. Furthermore, from the advanced mathematical relationships, it was found that there is a very close relationship between the oxygen-to-silicon molar ratio (O/Si), basic/acidic oxide molar ratio (B/A), the number of non-bridging oxygen per tetrahedrally-coordinated atoms (NBO/T), and the chemical compositions of LRC powder. Hence, the advanced mathematical relationships from the software output, and Statistical Package for the Social Sciences (SPSS), were used to determine the prediction model of the viscosity of LRC powder based on its chemical composition. This model had a very good correlation with the actual values obtained.
期刊介绍:
Ironmaking & Steelmaking: Processes, Products and Applications monitors international technological advances in the industry with a strong element of engineering and product related material. First class refereed papers from the international iron and steel community cover all stages of the process, from ironmaking and its attendant technologies, through casting and steelmaking, to rolling, forming and delivery of the product, including monitoring, quality assurance and environmental issues. The journal also carries research profiles, features on technological and industry developments and expert reviews on major conferences.