Influence of carbon sorbents on the potential ability of soils to self-cleaning from petroleum pollution

IF 0.8 Q3 ENGINEERING, PETROLEUM Georesursy Pub Date : 2022-09-30 DOI:10.18599/grs.2022.3.18
E. V. Smirnova, R. Okunev, K. Giniyatullin
{"title":"Influence of carbon sorbents on the potential ability of soils to self-cleaning from petroleum pollution","authors":"E. V. Smirnova, R. Okunev, K. Giniyatullin","doi":"10.18599/grs.2022.3.18","DOIUrl":null,"url":null,"abstract":"In a laboratory experiment, the ability of the soil to self-cleaning under heavy petroleum pollution and the effect of biochars and shungites on the cleaning process were studied. Incubation of contaminated soils for 28 days at a constant humidity and temperature without addition of sorbents led to a decrease in the residual content of petroleum products by only 8%. The addition of biochar and shungite at a dose of 2.5% made it possible to reduce the content of petroleum under constant incubation conditions to 48.8% and 38%, respectively. It was shown that the incubation of oil-contaminated soils in the regime of variable humidity and temperature without the addition of sorbents makes it possible to reduce the content of petroleum by 32% over 28 days of the experiment. In the course of the study, methods were developed for determining substrate-induced respiration (SIR) in various incubation modes. Soil contamination with petroleum led to a significant decrease of SIR in the initial period of incubation from 12.8 C-CO2 µg/g h to 8.6 C-CO2 µg/g h, which returned to normal on the 14th day of the experiment. It has been shown that the introduction of biochars (to a lesser extent schungites) into oil-contaminated soils ensures the maintenance of SIR at the required level and increases the potential capacity of soils for self-purification. The paper discusses the possibilities of increasing the potential capacity of soils for self-cleaning under heavy oil pollution.","PeriodicalId":43752,"journal":{"name":"Georesursy","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georesursy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18599/grs.2022.3.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

In a laboratory experiment, the ability of the soil to self-cleaning under heavy petroleum pollution and the effect of biochars and shungites on the cleaning process were studied. Incubation of contaminated soils for 28 days at a constant humidity and temperature without addition of sorbents led to a decrease in the residual content of petroleum products by only 8%. The addition of biochar and shungite at a dose of 2.5% made it possible to reduce the content of petroleum under constant incubation conditions to 48.8% and 38%, respectively. It was shown that the incubation of oil-contaminated soils in the regime of variable humidity and temperature without the addition of sorbents makes it possible to reduce the content of petroleum by 32% over 28 days of the experiment. In the course of the study, methods were developed for determining substrate-induced respiration (SIR) in various incubation modes. Soil contamination with petroleum led to a significant decrease of SIR in the initial period of incubation from 12.8 C-CO2 µg/g h to 8.6 C-CO2 µg/g h, which returned to normal on the 14th day of the experiment. It has been shown that the introduction of biochars (to a lesser extent schungites) into oil-contaminated soils ensures the maintenance of SIR at the required level and increases the potential capacity of soils for self-purification. The paper discusses the possibilities of increasing the potential capacity of soils for self-cleaning under heavy oil pollution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳吸附剂对石油污染土壤潜在自净能力的影响
在室内试验中,研究了重质石油污染下土壤的自清洁能力以及生物炭和顺土对土壤自清洁过程的影响。污染土壤在恒定湿度和温度下培养28天,不添加吸附剂,导致石油产品残留含量仅下降8%。在恒定的培养条件下,添加2.5%剂量的生物炭和顺石可以将石油含量分别降低到48.8%和38%。结果表明,在变湿度和变温度条件下,在不添加吸附剂的情况下,油污染土壤的培养可以在28天的实验中减少32%的石油含量。在研究过程中,开发了测定各种孵育模式下底物诱导呼吸(SIR)的方法。土壤受石油污染导致SIR在培养初期由12.8 C-CO2µg/g h显著下降至8.6 C-CO2µg/g h,在试验第14天恢复正常。研究表明,在受油污染的土壤中引入生物炭(在较小程度上是天石)可确保将SIR维持在所需水平,并增加土壤自净化的潜在能力。讨论了在重油污染条件下提高土壤自净能力的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Georesursy
Georesursy ENGINEERING, PETROLEUM-
CiteScore
1.50
自引率
25.00%
发文量
49
审稿时长
16 weeks
期刊最新文献
Issues of rational subsoil use in modern conditions Refinement of the geological model of Jurassic deposits accounting the results of stochastic inversion and facies modeling The permanent temperature monitoring for flow rate quantification in production and injection wells Mineralogical and technological features of gold from placers of the southern slope of Belaya Gora (Khabarovsk Krai) and stages of its formation About micro- and nanoscale gold in the veil of gold-bearing territories (on the example of a mineralization site in the basin of the river Adamikha, Amur region)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1