Diffusion and Thermal Shock Behaviour of Silicate Dental Ceramics

IF 1.1 4区 材料科学 Q3 Engineering Materials Science-Poland Pub Date : 2023-02-24 DOI:10.5755/j02.ms.30414
B. Ertuğ
{"title":"Diffusion and Thermal Shock Behaviour of Silicate Dental Ceramics","authors":"B. Ertuğ","doi":"10.5755/j02.ms.30414","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to examine the diffusion and thermal shock behaviour of the alternative dental silicates. The samples derived from BaO-SiO2 system have been produced by melting process and followed by the heat treatment. X-ray examinations have indicated that the amount of orthorhombic sanbornite phase rised due to treatment temperature as revealed by the peak intensities. The alteration of the morphology by treatment temperature was evident from scanning electron microscopy SEM images. Crystallization at low temperature produced small crystallites and coarsening was not observed with a rise in temperature. The failure of the dental samples after the thermal shock test was examined using SEM. A continuous crack geometry and very few crack branching were observed. Diffusivity constant (D) and diffusion rate were examined vs treatment temperature for the present system. Diffusion depth (L) was doubled when the crystallization treatment was applied. Based on the obtained results, these silicate samples might take part in the further characterization studies to be used as alternative dentistry materials.","PeriodicalId":49875,"journal":{"name":"Materials Science-Poland","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/j02.ms.30414","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to examine the diffusion and thermal shock behaviour of the alternative dental silicates. The samples derived from BaO-SiO2 system have been produced by melting process and followed by the heat treatment. X-ray examinations have indicated that the amount of orthorhombic sanbornite phase rised due to treatment temperature as revealed by the peak intensities. The alteration of the morphology by treatment temperature was evident from scanning electron microscopy SEM images. Crystallization at low temperature produced small crystallites and coarsening was not observed with a rise in temperature. The failure of the dental samples after the thermal shock test was examined using SEM. A continuous crack geometry and very few crack branching were observed. Diffusivity constant (D) and diffusion rate were examined vs treatment temperature for the present system. Diffusion depth (L) was doubled when the crystallization treatment was applied. Based on the obtained results, these silicate samples might take part in the further characterization studies to be used as alternative dentistry materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅酸盐牙科陶瓷的扩散和热冲击行为
本研究的目的是研究替代牙科硅酸盐的扩散和热冲击行为。采用熔融法制备了BaO-SiO2体系样品,并对样品进行了热处理。x射线检查表明,由于处理温度的升高,正交三斑岩相的数量增加,如峰值强度所示。从扫描电镜(SEM)图像可以看出,处理温度对合金形貌的影响是明显的。低温结晶产生小晶粒,温度升高时未观察到粗化现象。用扫描电子显微镜观察热冲击试验后牙体试样的破坏情况。裂纹几何形状连续,裂纹分支极少。测定了该体系的扩散系数常数(D)和扩散速率随处理温度的变化。结晶处理使扩散深度(L)增加了一倍。基于所获得的结果,这些硅酸盐样品可能会参与进一步的表征研究,以用作替代牙科材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science-Poland
Materials Science-Poland 工程技术-材料科学:综合
CiteScore
1.70
自引率
18.20%
发文量
0
审稿时长
6.2 months
期刊介绍: Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.
期刊最新文献
Structure and Ionic Conductivity of Ga and Nb Dual Doped LLZO Synthesized by Sol-Gel Method Nature-inspired Apatite Production: Steam Processing of Calcium Carbonate and Tricalcium Phosphate Nanosized Powder Blends Effects of the Growth Rate on the High-temperature Tensile Properties and Micro-organization of Directionally Solidified Ti-44Al-9Nb-1Cr-0.2W-0.2Y Alloys Effect of Bentonite Admixture Content on Effective Porosity and Hydraulic Conductivity of Clay-based Barrier Backfill Materials Synthesis and Determination of Al3+ in Chinese Herbs from Heilongjiang Province by Fluorescent Probe of Naphthalimide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1