High pressure photoluminescence of bismuth-doped yttria-alumina-silica glass

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY High Pressure Research Pub Date : 2022-01-02 DOI:10.1080/08957959.2022.2044031
M. Hughes, R. McMaster, J. Proctor, D. Hewak, Takenobu Suzuki, Y. Ohishi
{"title":"High pressure photoluminescence of bismuth-doped yttria-alumina-silica glass","authors":"M. Hughes, R. McMaster, J. Proctor, D. Hewak, Takenobu Suzuki, Y. Ohishi","doi":"10.1080/08957959.2022.2044031","DOIUrl":null,"url":null,"abstract":"ABSTRACT We report the effects of high pressure, up to 10.45 GPa, on the photoluminescence of Bi-doped yttria-alumina-silica glass under 532 nm excitation. We identify three emission bands attributed to Bi3+, Bi+ and a NIR emitting Bi centre, BiNIR. As the pressure is increased up to ∼6 GPa, an irreversible discontinuity in the trend for emission band energies indicates that an irreversible structural modification occurs. This irreversible discontinuity results in the peak energy of emission bands attributed to Bi+ and BiNIR shifting from those typical of Bi-doped oxide glasses to those observed in Bi-doped gallium-lanthanum-sulfide glass. The Bi3+ emission band can be almost eliminated at ∼6 GPa, but its intensity increases rapidly as the pressure is further increased. The ability we report here to irreversibly modify the emission of Bi-doped glass using pressure treatment adds an extra processing technique to researchers looking to optimize the emission from Bi-doped glasses.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"94 - 104"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2022.2044031","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT We report the effects of high pressure, up to 10.45 GPa, on the photoluminescence of Bi-doped yttria-alumina-silica glass under 532 nm excitation. We identify three emission bands attributed to Bi3+, Bi+ and a NIR emitting Bi centre, BiNIR. As the pressure is increased up to ∼6 GPa, an irreversible discontinuity in the trend for emission band energies indicates that an irreversible structural modification occurs. This irreversible discontinuity results in the peak energy of emission bands attributed to Bi+ and BiNIR shifting from those typical of Bi-doped oxide glasses to those observed in Bi-doped gallium-lanthanum-sulfide glass. The Bi3+ emission band can be almost eliminated at ∼6 GPa, but its intensity increases rapidly as the pressure is further increased. The ability we report here to irreversibly modify the emission of Bi-doped glass using pressure treatment adds an extra processing technique to researchers looking to optimize the emission from Bi-doped glasses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺铋钇铝硅玻璃的高压光致发光
摘要我们报道了高压的影响,高达10.45 532下掺铋钇铝硅玻璃的光致发光 nm激发。我们确定了三个归属于Bi3+、Bi+的发射带和一个NIR发射Bi中心BiNIR。当压力增加到~6时 GPa,发射带能量趋势中不可逆的不连续性表明发生了不可逆的结构修饰。这种不可逆的不连续性导致归因于Bi+和BiNIR的发射带的峰值能量从Bi掺杂氧化物玻璃的典型发射带转移到Bi掺杂镓-硫化镧玻璃中观察到的发射带。Bi3+发射带在~6时几乎可以消除 GPa,但其强度随着压力的进一步增加而迅速增加。我们在这里报道的使用压力处理不可逆地改变掺铋玻璃发射的能力为寻求优化掺铋玻璃的发射的研究人员增加了一种额外的处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Pressure Research
High Pressure Research 物理-物理:综合
CiteScore
3.80
自引率
5.00%
发文量
15
审稿时长
2 months
期刊介绍: High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as: condensed matter physics and chemistry geophysics and planetary physics synthesis of new materials chemical kinetics under high pressure industrial applications shockwaves in condensed matter instrumentation and techniques the application of pressure to food / biomaterials Theoretical papers of exceptionally high quality are also accepted.
期刊最新文献
Synchrotron x-ray diffraction and DFT study of non-centrosymmetric EuRhGe3 under high pressure EBS status of the large-volume press at beamline ID06-LVP Extreme conditions X-ray diffraction and imaging beamline ID15B on the ESRF extremely brilliant source In situ X-ray absorption spectroscopy using the FAME autoclave: a window into fluid-mineral-melt interactions in the Earth’s crust Science under extreme conditions at the ESRF Extremely Brilliant Source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1