M. Abid, M. F. Mushtaq, Urooj Akram, Mateen Ahmed Abbasi, F. Rustam
{"title":"Comparative analysis of TF-IDF and loglikelihood method for keywords extraction of twitter data","authors":"M. Abid, M. F. Mushtaq, Urooj Akram, Mateen Ahmed Abbasi, F. Rustam","doi":"10.22581/muet1982.2301.09","DOIUrl":null,"url":null,"abstract":"Twitter has become the foremost standard of social media in today’s world. Over 335 million users are online monthly, and near about 80% are accessing it through their mobiles. Further, Twitter is now supporting 35+ which enhance its usage too much. It facilitates people having different languages. Near about 21% of the total users are from US and 79% of total users are outside of US. A tweet is restricted to a hundred and forty characters; hence it contains such information which is more concise and much valuable. Due to its usage, it is estimated that five hundred million tweets are sent per day by different categories of people including teacher, students, celebrities, officers, musician, etc. So, there is a huge amount of data that is increasing on a daily basis that need to be categorized. The important key feature is to find the keywords in the huge data that is helpful for identifying a twitter for classification. For this purpose, Term Frequency-Inverse Document Frequency (TF-IDF) and Loglikelihood methods are chosen for keywords extracted from the music field and perform a comparative analysis on both results. In the end, relevance is performed from 5 users so that finally we can take a decision to make assumption on the basis of experiments that which method is best. This analysis is much valuable because it gives a more accurate estimation which method’s results are more reliable.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2301.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Twitter has become the foremost standard of social media in today’s world. Over 335 million users are online monthly, and near about 80% are accessing it through their mobiles. Further, Twitter is now supporting 35+ which enhance its usage too much. It facilitates people having different languages. Near about 21% of the total users are from US and 79% of total users are outside of US. A tweet is restricted to a hundred and forty characters; hence it contains such information which is more concise and much valuable. Due to its usage, it is estimated that five hundred million tweets are sent per day by different categories of people including teacher, students, celebrities, officers, musician, etc. So, there is a huge amount of data that is increasing on a daily basis that need to be categorized. The important key feature is to find the keywords in the huge data that is helpful for identifying a twitter for classification. For this purpose, Term Frequency-Inverse Document Frequency (TF-IDF) and Loglikelihood methods are chosen for keywords extracted from the music field and perform a comparative analysis on both results. In the end, relevance is performed from 5 users so that finally we can take a decision to make assumption on the basis of experiments that which method is best. This analysis is much valuable because it gives a more accurate estimation which method’s results are more reliable.