A. Moghaddam, J. Teghem, D. Tuyttens, F. Yalaoui, L. Amodeo
{"title":"Toward an Efficient Resolution for a Single-machine Bi-objective Scheduling Problem with Rejection","authors":"A. Moghaddam, J. Teghem, D. Tuyttens, F. Yalaoui, L. Amodeo","doi":"10.2478/fcds-2019-0010","DOIUrl":null,"url":null,"abstract":"Abstract We consider a single-machine bi-objective scheduling problem with rejection. In this problem, it is possible to reject some jobs. Four algorithms are provided to solve this scheduling problem. The two objectives are the total weighted completion time and the total rejection cost. The aim is to determine the set of efficient solutions. Four heuristics are described; they are implicit enumeration algorithms forming a branching tree, each one having two versions according to the root of the tree corresponding either to acceptance or rejection of all the jobs. The algorithms are first illustrated by a didactic example. Then they are compared on a large set of instances of various dimension and their respective performances are analysed.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"44 1","pages":"179 - 211"},"PeriodicalIF":1.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2019-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider a single-machine bi-objective scheduling problem with rejection. In this problem, it is possible to reject some jobs. Four algorithms are provided to solve this scheduling problem. The two objectives are the total weighted completion time and the total rejection cost. The aim is to determine the set of efficient solutions. Four heuristics are described; they are implicit enumeration algorithms forming a branching tree, each one having two versions according to the root of the tree corresponding either to acceptance or rejection of all the jobs. The algorithms are first illustrated by a didactic example. Then they are compared on a large set of instances of various dimension and their respective performances are analysed.