A survey and classification of publicly available COVID-19 datasets

IF 0.4 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE Annals of Library and Information Studies Pub Date : 2022-09-26 DOI:10.56042/alis.v69i3.58950
B. Dutta, P. Das, S. Mitra
{"title":"A survey and classification of publicly available COVID-19 datasets","authors":"B. Dutta, P. Das, S. Mitra","doi":"10.56042/alis.v69i3.58950","DOIUrl":null,"url":null,"abstract":"The current study curates a list of authentic and open-access sources of alphanumeric COVID-19 pandemic data. We have gathered 74 datasets from 42 sources, including sources from 18 countries. The datasets are searched through the Kaggle and GitHub repositories besides Google, providing a representation of varieties of pandemic-related datasets. The datasets are categorized according to their sources-primary and secondary, and according to their geographical distribution. While analyzing the dataset, we came across some classes in which the datasets can be categorized. We present the categorization in the form of taxonomy and highlight the present COVID-19 data collection and use challenges. The study will help researchers and data curators in the identification and classification of pandemic data. © 2022, National Institute of Science Communication and Policy Research. All rights reserved.","PeriodicalId":42973,"journal":{"name":"Annals of Library and Information Studies","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Library and Information Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/alis.v69i3.58950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The current study curates a list of authentic and open-access sources of alphanumeric COVID-19 pandemic data. We have gathered 74 datasets from 42 sources, including sources from 18 countries. The datasets are searched through the Kaggle and GitHub repositories besides Google, providing a representation of varieties of pandemic-related datasets. The datasets are categorized according to their sources-primary and secondary, and according to their geographical distribution. While analyzing the dataset, we came across some classes in which the datasets can be categorized. We present the categorization in the form of taxonomy and highlight the present COVID-19 data collection and use challenges. The study will help researchers and data curators in the identification and classification of pandemic data. © 2022, National Institute of Science Communication and Policy Research. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新冠肺炎公开数据集的调查和分类
当前的研究策划了一份字母数字新冠肺炎大流行数据的真实和开放获取来源列表。我们收集了来自42个来源的74个数据集,其中包括来自18个国家的来源。除了谷歌,这些数据集还通过Kaggle和GitHub存储库进行搜索,提供了各种与疫情相关的数据集的表示。数据集根据其主要来源和次要来源以及地理分布进行分类。在分析数据集时,我们发现了一些可以对数据集进行分类的类。我们以分类法的形式介绍了分类,并强调了当前新冠肺炎数据收集和使用方面的挑战。这项研究将帮助研究人员和数据管理员识别和分类疫情数据。©2022,美国国家科学传播与政策研究所。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Library and Information Studies
Annals of Library and Information Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.60
自引率
16.70%
发文量
3
审稿时长
20 weeks
期刊介绍: Annals of Library and Information Studies is a leading quarterly journal in library and information studies publishing original papers, survey reports, reviews, short communications, and letters pertaining to library science, information science and computer applications in these fields.
期刊最新文献
Annals of Library and Information Studies: Some reflections and future directions A study of ‘calf-path’ in file naming in institutional repositories in India The scope of open peer review in the scholarly publishing ecosystem Collaborative authorship patterns in computer science publications Automatic extraction of significant terms from the title and abstract of scientific papers using the machine learning algorithm: A multiple module approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1