Influence of single tunnel and twin tunnel on collapse pattern and maximum ground movement

IF 1.1 Q3 MINING & MINERAL PROCESSING Journal of Mining and Environment Pub Date : 2021-09-07 DOI:10.22044/JME.2021.11088.2085
V. Sarfarazi, Kaveh Asgari
{"title":"Influence of single tunnel and twin tunnel on collapse pattern and maximum ground movement","authors":"V. Sarfarazi, Kaveh Asgari","doi":"10.22044/JME.2021.11088.2085","DOIUrl":null,"url":null,"abstract":"Particle Flow Code in Two Dimensions (PFC2D) was used in order to examine the influence of single tunnel and twin tunnel on the collapse pattern and maximum ground movement. Since first PFC was calibrated by the experiments, the results obtained were rendered by a uniaxial test. Further, a rectangular model with dimensions of 100 m ˟ 100 m containing both the central tunnel and twin tunnel was built. The center of the single tunnel was placed 25 m under the ground surface, and its diameter changed from 10 m to 35 m with an increment of 5 m. The center of the twin tunnel was situated 25 m under the ground surface, and its diameter was changed from 10 m to 30 m with an increment of 5 m. For measurement of the vertical displacement, one measuring circle with a 2 m diameter was opted on the ground surface above the tunnel roof. The average of the vertical movement of discs covered in these circles was determined as a ground settlement. A confining pressure of 0.01 MPa was applied on the model. The uniaxial compression strength was 0/09 MPa; the results obtained depicted that the tunnel diameter controlled the extension of the collapse zone. Also the vertical displacement at the roof of the tunnel declined by decreasing the tunnel diameter. The ground settlement increased by increasing the tunnel diameter.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.11088.2085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 3

Abstract

Particle Flow Code in Two Dimensions (PFC2D) was used in order to examine the influence of single tunnel and twin tunnel on the collapse pattern and maximum ground movement. Since first PFC was calibrated by the experiments, the results obtained were rendered by a uniaxial test. Further, a rectangular model with dimensions of 100 m ˟ 100 m containing both the central tunnel and twin tunnel was built. The center of the single tunnel was placed 25 m under the ground surface, and its diameter changed from 10 m to 35 m with an increment of 5 m. The center of the twin tunnel was situated 25 m under the ground surface, and its diameter was changed from 10 m to 30 m with an increment of 5 m. For measurement of the vertical displacement, one measuring circle with a 2 m diameter was opted on the ground surface above the tunnel roof. The average of the vertical movement of discs covered in these circles was determined as a ground settlement. A confining pressure of 0.01 MPa was applied on the model. The uniaxial compression strength was 0/09 MPa; the results obtained depicted that the tunnel diameter controlled the extension of the collapse zone. Also the vertical displacement at the roof of the tunnel declined by decreasing the tunnel diameter. The ground settlement increased by increasing the tunnel diameter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单隧道和双隧道对塌方形态和最大地表移动的影响
采用二维颗粒流程序(PFC2D)研究了单洞和双洞对坍塌模式和最大地面运动的影响。由于第一个PFC是通过实验校准的,因此所获得的结果是通过单轴测试呈现的。此外,还建立了一个尺寸为100 m×100 m的矩形模型,包括中央隧道和双隧道。单个隧道的中心位于地表下25 m,其直径从10 m变为35 m,增量为5 m。双隧道的中心处于地表下25米,直径从10米变为30 m,增量5 m。为了测量垂直位移,在隧道顶部上方的地面上选择了一个直径为2m的测量圆。这些圆中覆盖的圆盘垂直运动的平均值被确定为地面沉降。在模型上施加0.01MPa的围压。单轴抗压强度为0/09MPa;结果表明,隧道直径控制了坍塌区的扩展。隧道顶部的垂直位移也随着隧道直径的减小而减小。随着隧道直径的增加,地面沉降增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
期刊最新文献
Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1