Using an analytic hierarchy process-based index and geographic information system in geochemical exploration of gold

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geochemistry-Exploration Environment Analysis Pub Date : 2021-06-03 DOI:10.1144/geochem2021-013
Erkan Yılmazer, M. Kavurmacı, Sercan Bozan
{"title":"Using an analytic hierarchy process-based index and geographic information system in geochemical exploration of gold","authors":"Erkan Yılmazer, M. Kavurmacı, Sercan Bozan","doi":"10.1144/geochem2021-013","DOIUrl":null,"url":null,"abstract":"In this study, a gold exploration index (GEI) that reduces financial expenditure and time losses during exploration studies has been developed using the analytical hierarchy process in a region where a high-sulfidation epithermal gold (Au) deposit exists. The GEI can be used to predict the location of the target element by evaluating the maps obtained from related element distributions together with a GEI-based prediction map. The hierarchical structure of the index has been established based on geochemistry of the rock samples. The elements used in the design of the hierarchical structure are arsenic (As), silver (Ag), antimony (Sb), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn), which are determined by the correlation analysis and experts’ opinions. The efficiency scores of the alternatives are converted into prediction maps called GEI-based anomaly distribution maps. These are compared with the maps derived from both geographic information system-based overlay analysis of the rock samples and spatial gold distribution. The efficiency scores of the alternatives in these maps are categorized into three groups as ‘high’, ‘medium’ and ‘weak’ in terms of gold potential. Comparison of the results with those derived using principal component analysis, weighted sum and weighted product models shows that the produced index yields reliable information that can be used to determine where gold enrichment occurs, especially in high-sulfidation epithermal environments. Supplementary material: Geochemical analysis results are available at https://doi.org/10.6084/m9.figshare.c.5443218","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2021-013","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a gold exploration index (GEI) that reduces financial expenditure and time losses during exploration studies has been developed using the analytical hierarchy process in a region where a high-sulfidation epithermal gold (Au) deposit exists. The GEI can be used to predict the location of the target element by evaluating the maps obtained from related element distributions together with a GEI-based prediction map. The hierarchical structure of the index has been established based on geochemistry of the rock samples. The elements used in the design of the hierarchical structure are arsenic (As), silver (Ag), antimony (Sb), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn), which are determined by the correlation analysis and experts’ opinions. The efficiency scores of the alternatives are converted into prediction maps called GEI-based anomaly distribution maps. These are compared with the maps derived from both geographic information system-based overlay analysis of the rock samples and spatial gold distribution. The efficiency scores of the alternatives in these maps are categorized into three groups as ‘high’, ‘medium’ and ‘weak’ in terms of gold potential. Comparison of the results with those derived using principal component analysis, weighted sum and weighted product models shows that the produced index yields reliable information that can be used to determine where gold enrichment occurs, especially in high-sulfidation epithermal environments. Supplementary material: Geochemical analysis results are available at https://doi.org/10.6084/m9.figshare.c.5443218
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用层次分析法和地理信息系统在金矿化探中的应用
在高硫化浅成低温热液型金矿区,利用层次分析法建立了一套减少资金投入和时间损失的金矿找矿指标。GEI可以通过评估相关元素分布得到的图和基于GEI的预测图来预测目标元素的位置。根据岩石样品的地球化学特征,建立了该指标的层次结构。分层结构设计中使用的元素为砷(As)、银(Ag)、锑(Sb)、铜(Cu)、锰(Mn)、铅(Pb)和锌(Zn),通过相关分析和专家意见确定。备选方案的效率分数被转换成预测图,称为基于gei的异常分布图。这些结果与基于地理信息系统的岩石样品叠加分析和空间金分布的地图进行了比较。在这些地图中,备选方案的效率得分按黄金潜力分为“高”、“中”和“弱”三组。将所得结果与主成分分析、加权和和加权乘积模型的结果进行比较,结果表明所得指数可提供可靠的信息,可用于确定金富集的位置,特别是在高硫化度的浅成热液环境中。补充资料:地球化学分析结果可在https://doi.org/10.6084/m9.figshare.c.5443218上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
期刊最新文献
Multi-element geochemical analyses on ultrafine soils in Western Australia - Towards establishing abundance ranges in mineral exploration settings Alteration assemblage characterization using machine learning applied to high resolution drill-core images, hyperspectral data, and geochemistry Silver, cobalt and nickel mineralogy and geochemistry of shale ore in the sediment-hosted stratiform Nowa Sól Cu-Ag deposit, SW Poland Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach Spatial distribution, ecological risk and origin of soil heavy metals in Laoguanhe watershed of the Middle Route of China's South-to-North Water Diversion Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1