Debiased machine learning of conditional average treatment effects and other causal functions

IF 2.9 4区 经济学 Q1 ECONOMICS Econometrics Journal Pub Date : 2017-02-21 DOI:10.1093/ectj/utaa027
V. Semenova, V. Chernozhukov
{"title":"Debiased machine learning of conditional average treatment effects and other causal functions","authors":"V. Semenova, V. Chernozhukov","doi":"10.1093/ectj/utaa027","DOIUrl":null,"url":null,"abstract":"This paper provides estimation and inference methods for the best linear predictor (approximation) of a structural function, such as conditional average structural and treatment effects, and structural derivatives, based on modern machine learning (ML) tools. We represent this structural function as a conditional expectation of an unbiased signal that depends on a nuisance parameter, which we estimate by modern machine learning techniques. We first adjust the signal to make it insensitive (Neyman-orthogonal) with respect to the first-stage regularization bias. We then project the signal onto a set of basis functions, growing with sample size, which gives us the best linear predictor of the structural function. We derive a complete set of results for estimation and simultaneous inference on all parameters of the best linear predictor, conducting inference by Gaussian bootstrap. When the structural function is smooth and the basis is sufficiently rich, our estimation and inference result automatically targets this function. When basis functions are group indicators, the best linear predictor reduces to group average treatment/structural effect, and our inference automatically targets these parameters. We demonstrate our method by estimating uniform confidence bands for the average price elasticity of gasoline demand conditional on income.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utaa027","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ectj/utaa027","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 114

Abstract

This paper provides estimation and inference methods for the best linear predictor (approximation) of a structural function, such as conditional average structural and treatment effects, and structural derivatives, based on modern machine learning (ML) tools. We represent this structural function as a conditional expectation of an unbiased signal that depends on a nuisance parameter, which we estimate by modern machine learning techniques. We first adjust the signal to make it insensitive (Neyman-orthogonal) with respect to the first-stage regularization bias. We then project the signal onto a set of basis functions, growing with sample size, which gives us the best linear predictor of the structural function. We derive a complete set of results for estimation and simultaneous inference on all parameters of the best linear predictor, conducting inference by Gaussian bootstrap. When the structural function is smooth and the basis is sufficiently rich, our estimation and inference result automatically targets this function. When basis functions are group indicators, the best linear predictor reduces to group average treatment/structural effect, and our inference automatically targets these parameters. We demonstrate our method by estimating uniform confidence bands for the average price elasticity of gasoline demand conditional on income.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
条件平均处理效果和其他因果函数的去偏机器学习
本文基于现代机器学习(ML)工具,提供了结构函数的最佳线性预测(近似)的估计和推理方法,如条件平均结构和治疗效果,以及结构导数。我们将这种结构函数表示为对无偏信号的条件期望,该无偏信号取决于我们通过现代机器学习技术估计的干扰参数。我们首先调整信号,使其相对于第一阶段正则化偏差不敏感(Neyman正交)。然后,我们将信号投影到一组基函数上,随着样本量的增加而增长,这为我们提供了结构函数的最佳线性预测值。我们导出了一组完整的结果,用于对最佳线性预测器的所有参数进行估计和同时推理,通过高斯自举进行推理。当结构函数是光滑的并且基础足够丰富时,我们的估计和推理结果自动地针对该函数。当基函数是组指标时,最佳线性预测因子减少为组平均治疗/结构效应,并且我们的推断自动针对这些参数。我们通过估计以收入为条件的汽油需求平均价格弹性的统一置信区间来证明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
期刊最新文献
The Vector Error Correction Index Model: Representation, Estimation and Identification Double Robustness for Complier Parameters and a Semiparametric Test for Complier Characteristics Revealing priors from posteriors with an application to inflation forecasting in the UK Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1