BioAcoustic Index Tool: long-term biodiversity monitoring using on-sensor acoustic index calculations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-08-16 DOI:10.1080/09524622.2021.1939786
D. Kadish, K. Støy
{"title":"BioAcoustic Index Tool: long-term biodiversity monitoring using on-sensor acoustic index calculations","authors":"D. Kadish, K. Støy","doi":"10.1080/09524622.2021.1939786","DOIUrl":null,"url":null,"abstract":"ABSTRACT Acoustic indices are valuable tools for measuring and tracking changes in biodiversity. However, the method used to collect acoustic index data can be made more effective by recent developments in electronics. The current process requires recording high-quality audio in the field and computing acoustic indices in the lab. This produces vast quantities of raw audio data, which limits the time that sensors can spend in the field and complicates data processing and analysis. Additionally, most field audio recorders are unable to log the full range of contextual environmental data that would help explain short-term variations. In this paper, we present the BioAcoustic Index Tool, a smart acoustic index and environmental sensor. The BioAcoustic Index Tool computes acoustic indices as audio is captured, storing only the index information, and logs temperature, humidity, and light levels. The sensor was able to operate completely autonomously for the entire five-month duration of the field study. In that time, it recorded over 4000 measurements of acoustic complexity and diversity all while producing the same amount of data that would be used to record 3 minutes of raw audio. These factors make the BioAcoustic Index Tool well-suited for large-scale, long-term acoustic biodiversity monitoring.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09524622.2021.1939786","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Acoustic indices are valuable tools for measuring and tracking changes in biodiversity. However, the method used to collect acoustic index data can be made more effective by recent developments in electronics. The current process requires recording high-quality audio in the field and computing acoustic indices in the lab. This produces vast quantities of raw audio data, which limits the time that sensors can spend in the field and complicates data processing and analysis. Additionally, most field audio recorders are unable to log the full range of contextual environmental data that would help explain short-term variations. In this paper, we present the BioAcoustic Index Tool, a smart acoustic index and environmental sensor. The BioAcoustic Index Tool computes acoustic indices as audio is captured, storing only the index information, and logs temperature, humidity, and light levels. The sensor was able to operate completely autonomously for the entire five-month duration of the field study. In that time, it recorded over 4000 measurements of acoustic complexity and diversity all while producing the same amount of data that would be used to record 3 minutes of raw audio. These factors make the BioAcoustic Index Tool well-suited for large-scale, long-term acoustic biodiversity monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物声学指数工具:长期生物多样性监测使用传感器声学指数计算
声学指数是测量和跟踪生物多样性变化的宝贵工具。然而,由于电子学的最新发展,用于收集声学指数数据的方法可以变得更加有效。目前的过程需要在现场记录高质量的音频,并在实验室计算声学指数。这会产生大量的原始音频数据,这限制了传感器在现场花费的时间,并使数据处理和分析复杂化。此外,大多数现场录音机无法记录有助于解释短期变化的全方位环境数据。在本文中,我们介绍了生物声学指数工具,一种智能声学指数和环境传感器。生物声学索引工具在捕获音频时计算声学索引,仅存储索引信息,并记录温度、湿度和光照水平。在整个五个月的实地研究期间,传感器能够完全自主运行。在那段时间里,它记录了4000多次声学复杂性和多样性的测量,同时产生了与记录3分钟原始音频相同的数据量。这些因素使得生物声学指数工具非常适合大规模、长期的声学生物多样性监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1