Liping Xiang, Xiaoyan Li, Yunchen Luo, Bing Zhou, Yuejun Liu, Yao Li, Duojiao Wu, Lijing Jia, Pei-Wu Zhu, Ming-Hua Zheng, Hua Wang, Yan Lu
{"title":"A multi-omic landscape of steatosis-to-NASH progression.","authors":"Liping Xiang, Xiaoyan Li, Yunchen Luo, Bing Zhou, Yuejun Liu, Yao Li, Duojiao Wu, Lijing Jia, Pei-Wu Zhu, Ming-Hua Zheng, Hua Wang, Yan Lu","doi":"10.1093/lifemeta/loac034","DOIUrl":null,"url":null,"abstract":"<p><p>Nonalcoholic steatohepatitis (NASH) has emerged as a major cause of liver failure and hepatocellular carcinoma. Investigation into the molecular mechanisms that underlie steatosis-to-NASH progression is key to understanding the development of NASH pathophysiology. Here, we present comprehensive multi-omic profiles of preclinical animal models to identify genes, non-coding RNAs, proteins, and plasma metabolites involved in this progression. In particular, by transcriptomics analysis, we identified Growth Differentiation Factor 3 (GDF3) as a candidate noninvasive biomarker in NASH. Plasma GDF3 levels are associated with hepatic pathological features in patients with NASH, and differences in these levels provide a high diagnostic accuracy of NASH diagnosis (AUROC = 0.90; 95% confidence interval: 0.85-0.95) with a good sensitivity (90.7%) and specificity (86.4%). In addition, by developing integrated proteomic-metabolomic datasets and performing a subsequent pharmacological intervention in a mouse model of NASH, we show that ferroptosis may be a potential target to treat NASH. Moreover, by using competing endogenous RNAs network analysis, we found that several miRNAs, including miR-582-5p and miR-292a-3p, and lncRNAs, including XLOC-085738 and XLOC-041531, are associated with steatosis-to-NASH progression. Collectively, our data provide a valuable resource into the molecular characterization of NASH progression, leading to the novel insight that GDF3 may be a potential noninvasive diagnostic biomarker for NASH while further showing that ferroptosis is a therapeutic target for the disease.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":" ","pages":"242-257"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemeta/loac034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nonalcoholic steatohepatitis (NASH) has emerged as a major cause of liver failure and hepatocellular carcinoma. Investigation into the molecular mechanisms that underlie steatosis-to-NASH progression is key to understanding the development of NASH pathophysiology. Here, we present comprehensive multi-omic profiles of preclinical animal models to identify genes, non-coding RNAs, proteins, and plasma metabolites involved in this progression. In particular, by transcriptomics analysis, we identified Growth Differentiation Factor 3 (GDF3) as a candidate noninvasive biomarker in NASH. Plasma GDF3 levels are associated with hepatic pathological features in patients with NASH, and differences in these levels provide a high diagnostic accuracy of NASH diagnosis (AUROC = 0.90; 95% confidence interval: 0.85-0.95) with a good sensitivity (90.7%) and specificity (86.4%). In addition, by developing integrated proteomic-metabolomic datasets and performing a subsequent pharmacological intervention in a mouse model of NASH, we show that ferroptosis may be a potential target to treat NASH. Moreover, by using competing endogenous RNAs network analysis, we found that several miRNAs, including miR-582-5p and miR-292a-3p, and lncRNAs, including XLOC-085738 and XLOC-041531, are associated with steatosis-to-NASH progression. Collectively, our data provide a valuable resource into the molecular characterization of NASH progression, leading to the novel insight that GDF3 may be a potential noninvasive diagnostic biomarker for NASH while further showing that ferroptosis is a therapeutic target for the disease.