{"title":"THERMAL BOUNDARY EFFECT ON THE HEAT TRANSFER PERFORMANCE OF A RIBBED COOLING CHANNEL WITH INTERSECTING RIBS","authors":"C. Zhang, W. W. Wang, Z. T. Tong","doi":"10.1134/S0021894422060074","DOIUrl":null,"url":null,"abstract":"<p>The current study focuses on the influence of thermal boundary conditions, especially for a ribbed cooling channel with two intersecting ribs. Numerical studies are carried out for the Reynolds number of 30000 under two kinds of thermal boundary conditions, i.e., the constant wall temperature condition and the uniform heat flux condition. The local normalized Nusselt number distributions and area-averaged values are compared and further analyzed. The thermal boundary type and value both affect the heat transfer performance. The uniform heat flux condition always yields higher heat transfer than the constant wall temperature condition. A correlation for the wall-to-coolant temperature ratio is obtained and compared with previously published correlations.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"63 6","pages":"963 - 971"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894422060074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The current study focuses on the influence of thermal boundary conditions, especially for a ribbed cooling channel with two intersecting ribs. Numerical studies are carried out for the Reynolds number of 30000 under two kinds of thermal boundary conditions, i.e., the constant wall temperature condition and the uniform heat flux condition. The local normalized Nusselt number distributions and area-averaged values are compared and further analyzed. The thermal boundary type and value both affect the heat transfer performance. The uniform heat flux condition always yields higher heat transfer than the constant wall temperature condition. A correlation for the wall-to-coolant temperature ratio is obtained and compared with previously published correlations.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.