Approximate bayesian inference for geostatistical generalised linear models

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2019-03-07 DOI:10.3934/FODS.2019002
E. Evangelou
{"title":"Approximate bayesian inference for geostatistical generalised linear models","authors":"E. Evangelou","doi":"10.3934/FODS.2019002","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to bring together recent developments in Bayesian generalised linear mixed models and geostatistics. We focus on approximate methods on both areas. A technique known as full-scale approximation, proposed by Sang and Huang (2012) for improving the computational drawbacks of large geostatistical data, is incorporated into the INLA methodology, used for approximate Bayesian inference. We also discuss how INLA can be used for approximating the posterior distribution of transformations of parameters, useful for practical applications. Issues regarding the choice of the parameters of the approximation such as the knots and taper range are also addressed. Emphasis is given in applications in the context of disease mapping by illustrating the methodology for modelling the loa loa prevalence in Cameroon and malaria in the Gambia.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/FODS.2019002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to bring together recent developments in Bayesian generalised linear mixed models and geostatistics. We focus on approximate methods on both areas. A technique known as full-scale approximation, proposed by Sang and Huang (2012) for improving the computational drawbacks of large geostatistical data, is incorporated into the INLA methodology, used for approximate Bayesian inference. We also discuss how INLA can be used for approximating the posterior distribution of transformations of parameters, useful for practical applications. Issues regarding the choice of the parameters of the approximation such as the knots and taper range are also addressed. Emphasis is given in applications in the context of disease mapping by illustrating the methodology for modelling the loa loa prevalence in Cameroon and malaria in the Gambia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地质统计广义线性模型的近似贝叶斯推断
本文的目的是汇集贝叶斯广义线性混合模型和地质统计学的最新发展。我们着重于这两个领域的近似方法。Sang和Huang(2012)提出了一种称为全面近似的技术,用于改善大型地质统计数据的计算缺陷,该技术被纳入INLA方法中,用于近似贝叶斯推断。我们还讨论了如何使用INLA来近似参数变换的后验分布,这对实际应用很有用。关于选择参数的近似,如节和锥度范围的问题也进行了讨论。重点介绍了在绘制疾病地图方面的应用,说明了对喀麦隆的疟疾流行率和冈比亚的疟疾进行建模的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets Noise calibration for SPDEs: A case study for the rotating shallow water model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1