Molecular Interactions Between Leptosphaeria maculans and Brassica Species.

IF 9.1 1区 农林科学 Q1 PLANT SCIENCES Annual review of phytopathology Pub Date : 2022-05-16 DOI:10.1146/annurev-phyto-021621-120602
M. H. Borhan, A. P. Van de Wouw, N. Larkan
{"title":"Molecular Interactions Between Leptosphaeria maculans and Brassica Species.","authors":"M. H. Borhan, A. P. Van de Wouw, N. Larkan","doi":"10.1146/annurev-phyto-021621-120602","DOIUrl":null,"url":null,"abstract":"Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-021621-120602","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward. Expected final online publication date for the Annual Review of Phytopathology, Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斑纤球菌与芸苔属植物的分子相互作用。
油菜是一种重要的油料作物,在世界各地提供食物、饲料和燃料。然而,由子囊菌Leptosphaeria maculans引起的黑腿病每年都会造成严重的产量损失。近年来,随着基因组技术的不断进步,人们对甘蓝型油菜的认识也越来越深入。黄斑相互作用迅速增加,克隆了许多Avr和R基因,使该系统成为研究植物病原体关联的模式生物。虽然B.napus-L。黄斑相互作用遵循Flor的基因对基因的定性抗性假说,它也在相互作用中加入了一些独特的自旋。这篇综述讨论了宿主-病原体相互作用的现状,并强调了未来需要解决的一些差距。《植物病理学年度评论》第60卷预计最终在线出版日期为2022年8月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of phytopathology
Annual review of phytopathology 生物-植物科学
CiteScore
16.60
自引率
1.00%
发文量
19
期刊介绍: The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.
期刊最新文献
Biotechnology and Genomic Approaches to Mitigating Disease Impacts on Forest Health Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests Free-Riding in Plant Health: A Social-Ecological Systems Approach to Collective Action. Comparing Apples and Oranges: Advances in Disease Resistance Breeding of Woody Perennial Fruit Crops. The Use of Caenorhabditis elegans as a Model for Plant-Parasitic Nematodes: What Have We Learned?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1