Imprecise credibility theory

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2020-10-23 DOI:10.1017/S1748499521000117
Liang Hong, Ryan Martin
{"title":"Imprecise credibility theory","authors":"Liang Hong, Ryan Martin","doi":"10.1017/S1748499521000117","DOIUrl":null,"url":null,"abstract":"Abstract The classical credibility theory is a cornerstone of experience rating, especially in the field of property and casualty insurance. An obstacle to putting the credibility theory into practice is the conversion of available prior information into a precise choice of crucial hyperparameters. In most real-world applications, the information necessary to justify a precise choice is lacking, so we propose an imprecise credibility estimator that honestly acknowledges the imprecision in the hyperparameter specification. This results in an interval estimator that is doubly robust in the sense that it retains the credibility estimator’s freedom from model specification and fast asymptotic concentration, while simultaneously being insensitive to prior hyperparameter specification.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"16 1","pages":"136 - 150"},"PeriodicalIF":1.5000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1748499521000117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1748499521000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The classical credibility theory is a cornerstone of experience rating, especially in the field of property and casualty insurance. An obstacle to putting the credibility theory into practice is the conversion of available prior information into a precise choice of crucial hyperparameters. In most real-world applications, the information necessary to justify a precise choice is lacking, so we propose an imprecise credibility estimator that honestly acknowledges the imprecision in the hyperparameter specification. This results in an interval estimator that is doubly robust in the sense that it retains the credibility estimator’s freedom from model specification and fast asymptotic concentration, while simultaneously being insensitive to prior hyperparameter specification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不精确可信度理论
摘要经典可信度理论是经验评级的基石,特别是在财产保险领域。将可信度理论付诸实践的一个障碍是将可用的先验信息转换为关键超参数的精确选择。在大多数实际应用中,缺乏证明精确选择所需的信息,因此我们提出了一个不精确的可信度估计器,它诚实地承认超参数规范中的不精确。这使得区间估计具有双重鲁棒性,因为它保留了可信度估计量不受模型规范和快速渐近集中的影响,同时对先验超参数规范不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach Bonus-Malus Scale premiums for Tweedie’s compound Poisson models Risk analysis of a multivariate aggregate loss model with dependence Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1