Analyzing Patient Stories on Social Media Using Text Analytics.

IF 5.9 Q1 Computer Science Journal of Healthcare Informatics Research Pub Date : 2021-03-24 eCollection Date: 2021-12-01 DOI:10.1007/s41666-021-00097-5
Moutasem A Zakkar, Daniel J Lizotte
{"title":"Analyzing Patient Stories on Social Media Using Text Analytics.","authors":"Moutasem A Zakkar,&nbsp;Daniel J Lizotte","doi":"10.1007/s41666-021-00097-5","DOIUrl":null,"url":null,"abstract":"<p><p>Patients can use social media to describe their healthcare experiences. Several social media platforms, such as the Care Opinion platform, host large volumes of patient stories. However, the large number of these stories and the healthcare system's workload make exploring these stories a difficult task for healthcare providers and administrators. This study uses text mining for analyzing patient stories on the Care Opinion platform and exploring healthcare experiences described in these stories. We collected 367,573 stories, which were posted between September 2005 and September 2019. Topic modeling (Latent Dirichlet Allocation) and sentiment analysis were used to analyze the stories. Sixteen topics were identified representing five aspects of the healthcare experience: communication between patients and providers, quality of clinical services, quality of non-clinical services, human aspects of healthcare experiences, and patient satisfaction. There was also a clear sentiment in 99% of the stories. More than 55% of the stories that describe the patient's request for information, the patient's description of treatment, or the patient's making of an appointment had a negative sentiment, which represents patient dissatisfaction. The study provides insights into the content of patient stories and demonstrates how topic modeling and sentiment analysis can be used to analyze large volumes of patient stories and provide insights into these stories. The findings suggest that these stories are not general social media posts; instead, they describe elements of healthcare experiences that can be helpful for quality improvement.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s41666-021-00097-5.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-021-00097-5","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00097-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10

Abstract

Patients can use social media to describe their healthcare experiences. Several social media platforms, such as the Care Opinion platform, host large volumes of patient stories. However, the large number of these stories and the healthcare system's workload make exploring these stories a difficult task for healthcare providers and administrators. This study uses text mining for analyzing patient stories on the Care Opinion platform and exploring healthcare experiences described in these stories. We collected 367,573 stories, which were posted between September 2005 and September 2019. Topic modeling (Latent Dirichlet Allocation) and sentiment analysis were used to analyze the stories. Sixteen topics were identified representing five aspects of the healthcare experience: communication between patients and providers, quality of clinical services, quality of non-clinical services, human aspects of healthcare experiences, and patient satisfaction. There was also a clear sentiment in 99% of the stories. More than 55% of the stories that describe the patient's request for information, the patient's description of treatment, or the patient's making of an appointment had a negative sentiment, which represents patient dissatisfaction. The study provides insights into the content of patient stories and demonstrates how topic modeling and sentiment analysis can be used to analyze large volumes of patient stories and provide insights into these stories. The findings suggest that these stories are not general social media posts; instead, they describe elements of healthcare experiences that can be helpful for quality improvement.

Supplementary information: The online version contains supplementary material available at 10.1007/s41666-021-00097-5.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用文本分析分析社交媒体上的患者故事
患者可以使用社交媒体来描述他们的医疗体验。一些社交媒体平台,如Care Opinion平台,承载了大量的患者故事。然而,这些故事的数量之多以及医疗保健系统的工作量使探索这些故事成为医疗保健提供者和管理人员的一项艰巨任务。本研究使用文本挖掘来分析Care Opinion平台上的患者故事,并探索这些故事中描述的医疗体验。我们收集了367573篇故事,这些故事发布于2005年9月至2019年9月之间。使用主题建模(潜在狄利克雷分配)和情感分析来分析故事。确定了16个主题,代表了医疗体验的五个方面:患者和提供者之间的沟通、临床服务质量、非临床服务的质量、医疗体验的人性方面和患者满意度。99%的故事中也有明显的情绪。在描述患者的信息请求、患者对治疗的描述或患者预约的故事中,超过55%的故事具有负面情绪,这代表了患者的不满。该研究提供了对患者故事内容的深入了解,并展示了如何使用主题建模和情感分析来分析大量患者故事,并提供对这些故事的深入了解。研究结果表明,这些故事不是一般的社交媒体帖子;相反,它们描述了有助于提高质量的医疗体验要素。补充信息:在线版本包含补充材料,可访问10.1007/s41666-021-00097-5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Healthcare Informatics Research
Journal of Healthcare Informatics Research Computer Science-Computer Science Applications
CiteScore
13.60
自引率
1.70%
发文量
12
期刊介绍: Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics.  The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications.   Topics include but are not limited to: ·         healthcare software architecture, framework, design, and engineering;·         electronic health records·         medical data mining·         predictive modeling·         medical information retrieval·         medical natural language processing·         healthcare information systems·         smart health and connected health·         social media analytics·         mobile healthcare·         medical signal processing·         human factors in healthcare·         usability studies in healthcare·         user-interface design for medical devices and healthcare software·         health service delivery·         health games·         security and privacy in healthcare·         medical recommender system·         healthcare workflow management·         disease profiling and personalized treatment·         visualization of medical data·         intelligent medical devices and sensors·         RFID solutions for healthcare·         healthcare decision analytics and support systems·         epidemiological surveillance systems and intervention modeling·         consumer and clinician health information needs, seeking, sharing, and use·         semantic Web, linked data, and ontology·         collaboration technologies for healthcare·         assistive and adaptive ubiquitous computing technologies·         statistics and quality of medical data·         healthcare delivery in developing countries·         health systems modeling and simulation·         computer-aided diagnosis
期刊最新文献
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models Clinical Information Retrieval: A Literature Review Supporting Fair and Efficient Emergency Medical Services in a Large Heterogeneous Region Validation of Electrocardiogram Based Photoplethysmogram Generated Using U-Net Based Generative Adversarial Networks Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1