A. Konovalov, V. Vlasov, S. Kolchugin, G. Malyshkin, R. Mukhamadiyev
{"title":"Monte Carlo simulation of sensitivity functions for few-view computed tomography of strongly absorbing media","authors":"A. Konovalov, V. Vlasov, S. Kolchugin, G. Malyshkin, R. Mukhamadiyev","doi":"10.1515/mcma-2022-2120","DOIUrl":null,"url":null,"abstract":"Abstract The paper describes a sensitivity function calculation method for few-view X-ray computed tomography of strongly absorbing objects. It is based on a probabilistic interpretation of energy transport through the object from a source to a detector. A PRIZMA code package is used to track photons. The code is developed at FSUE “RFNC–VNIITF named after Academ. E. I. Zababakhin” and implements a stochastic Monte Carlo method. The value of the sensitivity function in a discrete cell of the reconstruction region is assumed to be directly proportional to the fraction of photon trajectories which cross the cell from all those recorded by the detector. The method’s efficiency is validated through a numerical experiment on the reconstruction of a section of a spherical heavy-metal phantom with an air cavity and a density difference of 25 Ṫhe proposed method is shown to outperform the method based on projection approximation in case of reconstruction from 9 views.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"269 - 278"},"PeriodicalIF":0.8000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper describes a sensitivity function calculation method for few-view X-ray computed tomography of strongly absorbing objects. It is based on a probabilistic interpretation of energy transport through the object from a source to a detector. A PRIZMA code package is used to track photons. The code is developed at FSUE “RFNC–VNIITF named after Academ. E. I. Zababakhin” and implements a stochastic Monte Carlo method. The value of the sensitivity function in a discrete cell of the reconstruction region is assumed to be directly proportional to the fraction of photon trajectories which cross the cell from all those recorded by the detector. The method’s efficiency is validated through a numerical experiment on the reconstruction of a section of a spherical heavy-metal phantom with an air cavity and a density difference of 25 Ṫhe proposed method is shown to outperform the method based on projection approximation in case of reconstruction from 9 views.