M. Michalík, J. Rimarčík, Vladimír Lukes, E. Klein
{"title":"Thermodynamics of primary antioxidant action of flavonols in polar solvents","authors":"M. Michalík, J. Rimarčík, Vladimír Lukes, E. Klein","doi":"10.2478/acs-2019-0016","DOIUrl":null,"url":null,"abstract":"Abstract Very recently, a report on the antioxidant activity of flavonoids has appeared, where authors concluded that Hydrogen Atom Transfer mechanism represents the thermodynamically preferred mechanism in polar media (https://doi.org/10.1016/j.foodres.2018.11.018). Unfortunately, serious errors in the theoretical part of the paper led to incorrect conclusions. For six flavonols (galangin, kaempferol, quercetin, morin, myricetin, and fisetin), reaction enthalpies related to three mechanisms of the primary antioxidant action were computed. Based on the obtained results, the role of intramolecular hydrogen bonds (IHB) in the thermodynamics of the antioxidant effect is presented. Calculations and the role of solvation enthalpies of proton and electron in the determination of thermodynamically preferred mechanism is also briefly explained and discussed. The obtained results are in accordance with published works considering the Sequential Proton-Loss Electron-Transfer thermodynamically preferred reaction pathway.","PeriodicalId":7088,"journal":{"name":"Acta Chimica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chimica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acs-2019-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Very recently, a report on the antioxidant activity of flavonoids has appeared, where authors concluded that Hydrogen Atom Transfer mechanism represents the thermodynamically preferred mechanism in polar media (https://doi.org/10.1016/j.foodres.2018.11.018). Unfortunately, serious errors in the theoretical part of the paper led to incorrect conclusions. For six flavonols (galangin, kaempferol, quercetin, morin, myricetin, and fisetin), reaction enthalpies related to three mechanisms of the primary antioxidant action were computed. Based on the obtained results, the role of intramolecular hydrogen bonds (IHB) in the thermodynamics of the antioxidant effect is presented. Calculations and the role of solvation enthalpies of proton and electron in the determination of thermodynamically preferred mechanism is also briefly explained and discussed. The obtained results are in accordance with published works considering the Sequential Proton-Loss Electron-Transfer thermodynamically preferred reaction pathway.