Romil Rawat, Olukayode Ayodele Oki, Sakthidasan Sankaran, Hector Florez, S. A. Ajagbe
{"title":"Techniques for predicting dark web events focused on the delivery of illicit products and ordered crime","authors":"Romil Rawat, Olukayode Ayodele Oki, Sakthidasan Sankaran, Hector Florez, S. A. Ajagbe","doi":"10.11591/ijece.v13i5.pp5354-5365","DOIUrl":null,"url":null,"abstract":"Malicious actors, specially trained professionals operating anonymously on the dark web (DW) platform to conduct cyber fraud, illegal drug supply, online kidnapping orders, CryptoLocker induction, contract hacking, terrorist recruitment portals on the online social network (OSN) platform, and financing are always a possibility in the hyperspace. The amount and variety of unlawful actions are increasing, which has prompted law enforcement (LE) agencies to develop efficient prevention tactics. In the current atmosphere of rapidly expanding cybercrime, conventional crime-solving methods are unable to produce results due to their slowness and inefficiency. The methods for accurately predicting crime before it happens \"automated machine\" to help police officers ease the burden on personnel while also assisting in preventing offense. To achieve and explain the results of a few cases in which such approaches were applied, we advise combining machine learning (ML) with computer vision (CV) strategies. This study's objective is to present dark web crime statistics and a forecasting model for generating alerts of illegal operations like drug supply, people smuggling, terrorist staffing and radicalization, and deceitful activities that are connected to gangs or organizations showing online presence using ML and CV to help law enforcement organizations identify, and accumulate proactive tactics for solving crimes.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5354-5365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Malicious actors, specially trained professionals operating anonymously on the dark web (DW) platform to conduct cyber fraud, illegal drug supply, online kidnapping orders, CryptoLocker induction, contract hacking, terrorist recruitment portals on the online social network (OSN) platform, and financing are always a possibility in the hyperspace. The amount and variety of unlawful actions are increasing, which has prompted law enforcement (LE) agencies to develop efficient prevention tactics. In the current atmosphere of rapidly expanding cybercrime, conventional crime-solving methods are unable to produce results due to their slowness and inefficiency. The methods for accurately predicting crime before it happens "automated machine" to help police officers ease the burden on personnel while also assisting in preventing offense. To achieve and explain the results of a few cases in which such approaches were applied, we advise combining machine learning (ML) with computer vision (CV) strategies. This study's objective is to present dark web crime statistics and a forecasting model for generating alerts of illegal operations like drug supply, people smuggling, terrorist staffing and radicalization, and deceitful activities that are connected to gangs or organizations showing online presence using ML and CV to help law enforcement organizations identify, and accumulate proactive tactics for solving crimes.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]