Behavior of Some Hypothesis Tests for the Covariance Matrix of High Dimensional Data

A. Bolívar-Cimé, Didier Cortez-Elizalde
{"title":"Behavior of Some Hypothesis Tests for the Covariance Matrix of High Dimensional Data","authors":"A. Bolívar-Cimé, Didier Cortez-Elizalde","doi":"10.15446/rce.v45n2.98550","DOIUrl":null,"url":null,"abstract":"The study of the structure of the covariance matrix when the dimension of the data is much greater than the sample size (high dimensional data) is a complicated problem, since we have many unknown parameters and few data. Several hypothesis tests for the covariance matrix, in the high dimensional context and in the classical case (where the dimension of the data is less than the sample size), can be found in the literature. It has been of interest the tests for the null hypothesis that the covariance matrix of Gaussian data is equal or proportional to the identity matrix, considering the classical case as well as the high dimensional context. Since it is important to have a wide comparison between these tests found in the literature, and for some of them it is difficult to have theoretical results about their powers, in this work we compare several tests by simulations, in terms of the size and power of the test. We also present some examples of application with real high dimensional data found in the literature.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rce.v45n2.98550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The study of the structure of the covariance matrix when the dimension of the data is much greater than the sample size (high dimensional data) is a complicated problem, since we have many unknown parameters and few data. Several hypothesis tests for the covariance matrix, in the high dimensional context and in the classical case (where the dimension of the data is less than the sample size), can be found in the literature. It has been of interest the tests for the null hypothesis that the covariance matrix of Gaussian data is equal or proportional to the identity matrix, considering the classical case as well as the high dimensional context. Since it is important to have a wide comparison between these tests found in the literature, and for some of them it is difficult to have theoretical results about their powers, in this work we compare several tests by simulations, in terms of the size and power of the test. We also present some examples of application with real high dimensional data found in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维数据协方差矩阵的一些假设检验行为
当数据的维数远大于样本量(高维数据)时,研究协方差矩阵的结构是一个复杂的问题,因为我们有很多未知参数,数据很少。在高维背景下和经典情况下(数据的维度小于样本量),可以在文献中找到协方差矩阵的几个假设检验。考虑到经典情况和高维背景,高斯数据的协方差矩阵等于或与单位矩阵成比例的零假设的测试一直是令人感兴趣的。由于在文献中发现的这些测试之间进行广泛的比较是很重要的,并且对于其中一些测试来说,很难获得关于其功率的理论结果,因此在这项工作中,我们通过模拟从测试的大小和功率方面比较了几项测试。我们还介绍了一些在文献中发现的实际高维数据的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Colombiana De Estadistica
Revista Colombiana De Estadistica STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication. The Editorial Committee assumes that the works submitted for evaluation have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.
期刊最新文献
An Improved Estimator of finite Population Variance Using two Auxiliary Variable SRS Imputation of Missing Data Through Product Type Exponential Methods in Sampling Theory Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution Robust Post-Hoc Multiple Comparisons: Skew t Distributed Error Terms Nonparametric Prediction for Spatial Dependent Functional Data Under Fixed Sampling Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1