Bayesian phylogenetic analysis of linguistic data using BEAST

IF 2.1 0 LANGUAGE & LINGUISTICS Journal of Language Evolution Pub Date : 2021-09-23 DOI:10.1093/jole/lzab005
Konstantin Hoffmann, R. Bouckaert, Simon J. Greenhill, D. Kühnert
{"title":"Bayesian phylogenetic analysis of linguistic data using BEAST","authors":"Konstantin Hoffmann, R. Bouckaert, Simon J. Greenhill, D. Kühnert","doi":"10.1093/jole/lzab005","DOIUrl":null,"url":null,"abstract":"\n Bayesian phylogenetic methods provide a set of tools to efficiently evaluate large linguistic datasets by reconstructing phylogenies—family trees—that represent the history of language families. These methods provide a powerful way to test hypotheses about prehistory, regarding the subgrouping, origins, expansion, and timing of the languages and their speakers. Through phylogenetics, we gain insights into the process of language evolution in general and into how fast individual features change in particular. This article introduces Bayesian phylogenetics as applied to languages. We describe substitution models for cognate evolution, molecular clock models for the evolutionary rate along the branches of a tree, and tree generating processes suitable for linguistic data. We explain how to find the best-suited model using path sampling or nested sampling. The theoretical background of these models is supplemented by a practical tutorial describing how to set up a Bayesian phylogenetic analysis using the software tool BEAST2.","PeriodicalId":37118,"journal":{"name":"Journal of Language Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Language Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jole/lzab005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 10

Abstract

Bayesian phylogenetic methods provide a set of tools to efficiently evaluate large linguistic datasets by reconstructing phylogenies—family trees—that represent the history of language families. These methods provide a powerful way to test hypotheses about prehistory, regarding the subgrouping, origins, expansion, and timing of the languages and their speakers. Through phylogenetics, we gain insights into the process of language evolution in general and into how fast individual features change in particular. This article introduces Bayesian phylogenetics as applied to languages. We describe substitution models for cognate evolution, molecular clock models for the evolutionary rate along the branches of a tree, and tree generating processes suitable for linguistic data. We explain how to find the best-suited model using path sampling or nested sampling. The theoretical background of these models is supplemented by a practical tutorial describing how to set up a Bayesian phylogenetic analysis using the software tool BEAST2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BEAST的语言数据贝叶斯系统发育分析
贝叶斯系统发育方法提供了一套工具,通过重建代表语系历史的系统发育(家谱)来有效评估大型语言数据集。这些方法提供了一种强有力的方法来检验关于史前的假设,关于语言及其使用者的亚组、起源、扩展和时间安排。通过系统发育学,我们可以深入了解语言进化的一般过程,尤其是个体特征的变化速度。本文介绍了贝叶斯系统发育学在语言中的应用。我们描述了同源进化的替代模型,树分支进化率的分子时钟模型,以及适用于语言数据的树生成过程。我们解释了如何使用路径采样或嵌套采样来找到最适合的模型。这些模型的理论背景由一个实用教程补充,该教程描述了如何使用软件工具BEAST2建立贝叶斯系统发育分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Language Evolution
Journal of Language Evolution Social Sciences-Linguistics and Language
CiteScore
4.50
自引率
7.70%
发文量
8
期刊最新文献
Derivational morphology and suffixing bias on linguistic and nonlinguistic material Bayesian phylogenetic analysis of pitch-accent systems based on accentual class merger: a new method applied to Japanese dialects The evolution of evolutionary linguistics Evolutionary pathways of complexity in gender systems Evolution of Pantomime in Dyadic Interaction. A Motion Capture Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1