{"title":"Optimality Conditions for Nonsmooth Nonconvex-Nonconcave Min-Max Problems and Generative Adversarial Networks","authors":"Jie Jiang, Xiaojun Chen","doi":"10.1137/22m1482238","DOIUrl":null,"url":null,"abstract":"This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine learning and games. We first provide sufficient conditions for the existence of global minimax points and local minimax points. Next, we establish the first-order and second-order optimality conditions for local minimax points by using directional derivatives. These conditions reduce to smooth min-max problems with Fr{\\'e}chet derivatives. We apply our theoretical results to generative adversarial networks (GANs) in which two neural networks contest with each other in a game. Examples are used to illustrate applications of the new theory for training GANs.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1482238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8
Abstract
This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine learning and games. We first provide sufficient conditions for the existence of global minimax points and local minimax points. Next, we establish the first-order and second-order optimality conditions for local minimax points by using directional derivatives. These conditions reduce to smooth min-max problems with Fr{\'e}chet derivatives. We apply our theoretical results to generative adversarial networks (GANs) in which two neural networks contest with each other in a game. Examples are used to illustrate applications of the new theory for training GANs.