{"title":"A Hybrid Volume-of-Fluid/Euler–Lagrange Method for Vertical Plunging Jet Flows","authors":"Xiao-song Zhang, Weiwen Zhao, D. Wan","doi":"10.17736/ijope.2022.jc838","DOIUrl":null,"url":null,"abstract":"The vertical plunging jet is a typical multiscale two-phase flow problem in which a large number of microbubbles are formed by the impingement of a liquid jet with a free surface. Traditional numerical simulation methods experience difficulty reproducing both the large-scale phase interface evolution and the small-scale microbubbles at the same time. In this paper, a hybrid volume-of-fluid (VOF)/Euler–Lagrange method is adopted to simulate the vertical plunging jet flow problem. The large-scale air-water interface is captured by the VOF method, and the microbubbles are modeled as Lagrange points. Special algorithms are designed to realize a smooth transformation between two frameworks. Results indicate that satisfactory multiscale two-phase flow capture accuracy can be achieved with high efficiency by using the new method.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2022.jc838","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
The vertical plunging jet is a typical multiscale two-phase flow problem in which a large number of microbubbles are formed by the impingement of a liquid jet with a free surface. Traditional numerical simulation methods experience difficulty reproducing both the large-scale phase interface evolution and the small-scale microbubbles at the same time. In this paper, a hybrid volume-of-fluid (VOF)/Euler–Lagrange method is adopted to simulate the vertical plunging jet flow problem. The large-scale air-water interface is captured by the VOF method, and the microbubbles are modeled as Lagrange points. Special algorithms are designed to realize a smooth transformation between two frameworks. Results indicate that satisfactory multiscale two-phase flow capture accuracy can be achieved with high efficiency by using the new method.
期刊介绍:
The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world.
Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.