Study on cyclic variation rate of fuel flow in the nozzle during fuel injection

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL International Journal of Spray and Combustion Dynamics Pub Date : 2021-09-01 DOI:10.1177/17568277211055979
W. Hua, Zhang Xin-yu, Jiang Yu-long, Zhao Ling-yao
{"title":"Study on cyclic variation rate of fuel flow in the nozzle during fuel injection","authors":"W. Hua, Zhang Xin-yu, Jiang Yu-long, Zhao Ling-yao","doi":"10.1177/17568277211055979","DOIUrl":null,"url":null,"abstract":"The fuel flow pattern in the fuel injection nozzle of diesel engine is a complex and changeable phenomenon, which is easily affected by various factors, bringing the differences of flow patterns between multiple injection cycles. To solve the above problem, a visual experimental platform of fuel injection nozzle was built, in which the 100 injection cycles of diesel engine on the same working condition were photographed via shadowgraphy to study the difference in fuel flow pattern in the nozzle by ensemble average processing method. The cyclic variation rate K of fuel flow pattern is defined. Results demonstrate that the fuel flow pattern tends to be the same in multiple fuel injection cycles, but there is a strong randomness at the starting of injection and after ending of injection; the K can be reduced by decreasing the injection pressure and the inclination angle of orifice, so that the fuel flow pattern in the nozzle tends to be consistent.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spray and Combustion Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277211055979","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fuel flow pattern in the fuel injection nozzle of diesel engine is a complex and changeable phenomenon, which is easily affected by various factors, bringing the differences of flow patterns between multiple injection cycles. To solve the above problem, a visual experimental platform of fuel injection nozzle was built, in which the 100 injection cycles of diesel engine on the same working condition were photographed via shadowgraphy to study the difference in fuel flow pattern in the nozzle by ensemble average processing method. The cyclic variation rate K of fuel flow pattern is defined. Results demonstrate that the fuel flow pattern tends to be the same in multiple fuel injection cycles, but there is a strong randomness at the starting of injection and after ending of injection; the K can be reduced by decreasing the injection pressure and the inclination angle of orifice, so that the fuel flow pattern in the nozzle tends to be consistent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喷油过程中喷管内燃油流量循环变化率的研究
柴油机喷油嘴内的燃油流型是一种复杂多变的现象,容易受到各种因素的影响,从而导致多个喷油周期之间的流型差异。为了解决上述问题,建立了一个喷油嘴可视化实验平台,在该平台上,通过阴影摄影法拍摄了柴油机在相同工况下的100个喷油循环,用集成平均处理方法研究了喷油嘴内燃料流动模式的差异。定义了燃料流动模式的循环变化率K。结果表明,在多个燃料喷射循环中,燃料流动模式趋于相同,但在喷射开始和结束后具有较强的随机性;K可以通过降低喷射压力和孔口倾角来降低,从而使喷嘴中的燃料流动模式趋于一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Spray and Combustion Dynamics
International Journal of Spray and Combustion Dynamics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.20
自引率
12.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: International Journal of Spray and Combustion Dynamics is a peer-reviewed open access journal on fundamental and applied research in combustion and spray dynamics. Fundamental topics include advances in understanding unsteady combustion, combustion instability and noise, flame-acoustic interaction and its active and passive control, duct acoustics...
期刊最新文献
Comparison of acoustic, optical, and heat release rate based flame transfer functions for a lean-burn injector under engine-like conditions Numerical study of the linear and non-linear damping in an acoustically forced cold-flow test rig with coupled cavities Intermittency transition to azimuthal instability in a turbulent annular combustor Network- and CFD/CAA-modelling of the high frequency flame response in multi-jet combustors Towards a momentum potential theory for reacting flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1