Y. Aider, I. Kaur, Ashreet Mishra, Like Li, Heejin Cho, Janna Martinek, Zhiwen Ma, Prashant Singh
{"title":"Heat Transfer Characteristics of Particle and Air Flow Through Additively Manufactured Lattice Frame Material Based on Octet-Shape Topology","authors":"Y. Aider, I. Kaur, Ashreet Mishra, Like Li, Heejin Cho, Janna Martinek, Zhiwen Ma, Prashant Singh","doi":"10.1115/1.4062196","DOIUrl":null,"url":null,"abstract":"\n Particle-to-supercritical carbon dioxide (sCO2) heat exchanger is a critical component in next-generation concentrating solar power (CSP) plants. The inherently low heat transfer between falling particles and sCO2 imposes a challenge towards economic justification of levelized cost of electricity produced through solar energy. Introduction of integrated porous media with the walls bounding particle flow has the potential to enhance the overall particle-to-sCO2 heat exchanger performance. This paper presents an experimental study on heat transfer characterization of additively manufactured lattice frame material based on Octet-shaped unit cell with particles and air as working fluids. The lattice structures were additively manufactured in Stainless Steel (SS) 316L and SS420 (with 40% bronze infiltration) via Binder jetting process, where the lattice porosities were varied between 0.75 and 0.9. The mean particle diameters were varied from 266-966 μm. The effective thermal conductivity and averaged heat transfer coefficient were determined through steady-state experiments. It was found that the presence of lattice enhances the effective thermal conductivity by 2-4 times when compared to packed bed of particles alone. Furthermore, for gravity-assisted particle flow through lattice panel, significantly high convective heat transfer coefficients ranging from 200-400 W/m2K were obtained for the range of particle diameters tested. The superior thermal transport properties of Octet-shape-based lattice frame for particle flow makes it a very promising candidate for particle-to-sCO2 heat exchanger for CSP application.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Particle-to-supercritical carbon dioxide (sCO2) heat exchanger is a critical component in next-generation concentrating solar power (CSP) plants. The inherently low heat transfer between falling particles and sCO2 imposes a challenge towards economic justification of levelized cost of electricity produced through solar energy. Introduction of integrated porous media with the walls bounding particle flow has the potential to enhance the overall particle-to-sCO2 heat exchanger performance. This paper presents an experimental study on heat transfer characterization of additively manufactured lattice frame material based on Octet-shaped unit cell with particles and air as working fluids. The lattice structures were additively manufactured in Stainless Steel (SS) 316L and SS420 (with 40% bronze infiltration) via Binder jetting process, where the lattice porosities were varied between 0.75 and 0.9. The mean particle diameters were varied from 266-966 μm. The effective thermal conductivity and averaged heat transfer coefficient were determined through steady-state experiments. It was found that the presence of lattice enhances the effective thermal conductivity by 2-4 times when compared to packed bed of particles alone. Furthermore, for gravity-assisted particle flow through lattice panel, significantly high convective heat transfer coefficients ranging from 200-400 W/m2K were obtained for the range of particle diameters tested. The superior thermal transport properties of Octet-shape-based lattice frame for particle flow makes it a very promising candidate for particle-to-sCO2 heat exchanger for CSP application.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.