{"title":"On operator fractional Lévy motion: integral representations and time-reversibility","authors":"B. C. Boniece, G. Didier","doi":"10.1017/apr.2021.41","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we construct operator fractional Lévy motion (ofLm), a broad class of infinitely divisible stochastic processes that are covariance operator self-similar and have wide-sense stationary increments. The ofLm class generalizes the univariate fractional Lévy motion as well as the multivariate operator fractional Brownian motion (ofBm). OfLm can be divided into two types, namely, moving average (maofLm) and real harmonizable (rhofLm), both of which share the covariance structure of ofBm under assumptions. We show that maofLm and rhofLm admit stochastic integral representations in the time and Fourier domains, and establish their distinct small- and large-scale limiting behavior. We also characterize time-reversibility for ofLm through parametric conditions related to its Lévy measure. In particular, we show that, under non-Gaussianity, the parametric conditions for time-reversibility are generally more restrictive than those for the Gaussian case (ofBm).","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":"54 1","pages":"493 - 535"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.41","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this paper, we construct operator fractional Lévy motion (ofLm), a broad class of infinitely divisible stochastic processes that are covariance operator self-similar and have wide-sense stationary increments. The ofLm class generalizes the univariate fractional Lévy motion as well as the multivariate operator fractional Brownian motion (ofBm). OfLm can be divided into two types, namely, moving average (maofLm) and real harmonizable (rhofLm), both of which share the covariance structure of ofBm under assumptions. We show that maofLm and rhofLm admit stochastic integral representations in the time and Fourier domains, and establish their distinct small- and large-scale limiting behavior. We also characterize time-reversibility for ofLm through parametric conditions related to its Lévy measure. In particular, we show that, under non-Gaussianity, the parametric conditions for time-reversibility are generally more restrictive than those for the Gaussian case (ofBm).
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.