Possibilities of velocity field analysis from Hinode SOT/SP data

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Open Astronomy Pub Date : 2021-01-01 DOI:10.1515/astro-2021-0026
S. G. Mozharovsky
{"title":"Possibilities of velocity field analysis from Hinode SOT/SP data","authors":"S. G. Mozharovsky","doi":"10.1515/astro-2021-0026","DOIUrl":null,"url":null,"abstract":"Abstract The possibility of analyzing the line of sight (LOS) velocity and its gradient at each point of the Hinode SOT/SP maps using bisector analysis is revealed. A technique for obtaining such gradient is described. To estimate the velocity gradient, it is necessary to know both the velocity value and the layer height to which the bisector point is responded. We have constructed and tested a method to determine this height. We found velocities at the same heights for lines Fe I λ 6301, 6302 Å averaged over the whole map. It turned out that these velocities have some difference that changes with height and time. The error in the estimating of average velocity for the whole map is 2 m·s−1. It follows that the wavelengths of lines 6301 and 6302 given in the NIST tables may differ from the real ones at 5.5 mÅ. Or there is an inaccuracy in the spectrograph dispersion specified in the FITS files. As an example, the curves of changes with the height of the LOS velocity and its gradient were constructed both for points of the whole map and for subsets of the hottest and coldest points.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2021-0026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The possibility of analyzing the line of sight (LOS) velocity and its gradient at each point of the Hinode SOT/SP maps using bisector analysis is revealed. A technique for obtaining such gradient is described. To estimate the velocity gradient, it is necessary to know both the velocity value and the layer height to which the bisector point is responded. We have constructed and tested a method to determine this height. We found velocities at the same heights for lines Fe I λ 6301, 6302 Å averaged over the whole map. It turned out that these velocities have some difference that changes with height and time. The error in the estimating of average velocity for the whole map is 2 m·s−1. It follows that the wavelengths of lines 6301 and 6302 given in the NIST tables may differ from the real ones at 5.5 mÅ. Or there is an inaccuracy in the spectrograph dispersion specified in the FITS files. As an example, the curves of changes with the height of the LOS velocity and its gradient were constructed both for points of the whole map and for subsets of the hottest and coldest points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Hinode SOT/SP数据进行速度场分析的可能性
摘要揭示了利用平分线分析法分析Hinode SOT/SP地图各点视距速度及其梯度的可能性。描述了一种获得这种梯度的技术。为了估计速度梯度,必须同时知道速度值和等分点响应的层高。我们已经构建并测试了一种方法来确定这个高度。我们发现在相同高度的速度线Fe I λ 6301, 6302 Å平均在整个地图上。结果是这些速度有一些随高度和时间变化的差异。整个地图的平均速度估计误差为2 m·s−1。由此可见,NIST表格中给出的6301和6302线的波长可能与实际波长5.5 mÅ有所不同。或者在FITS文件中指定的光谱仪色散不准确。以整幅图的点和最热点和最冷点的子集为例,分别构建了随LOS速度高度及其梯度的变化曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Astronomy
Open Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍: The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.
期刊最新文献
A novel autonomous navigation constellation in the Earth–Moon system Asteroids discovered in the Baldone Observatory between 2017 and 2022: The orbits of asteroid 428694 Saule and 330836 Orius Intelligent collision avoidance strategy for all-electric propulsion GEO satellite orbit transfer control Stability of granular media impacts morphological characteristics under different impact conditions Parallel observations process of Tianwen-1 orbit determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1