Mesh scheme for a phase transition problem with time-fractional derivative

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Russian Journal of Numerical Analysis and Mathematical Modelling Pub Date : 2022-06-01 DOI:10.1515/rnam-2022-0013
A. Lapin
{"title":"Mesh scheme for a phase transition problem with time-fractional derivative","authors":"A. Lapin","doi":"10.1515/rnam-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract The time-fractional phase transition problem, formulated in enthalpy form, is studied. This nonlinear problem with an unknown moving boundary includes, as an example, a mathematical model of one-phase Stefan problem with the latent heat accumulation memory. The posed problem is approximated by the backward Euler mesh scheme. The unique solvability of the mesh scheme is proved and a priori estimates for the solution are obtained. The properties of the mesh problem are studied, in particular, an estimate of movement rate for the mesh phase transition boundary is established. The proved estimate make it possible to localize the phase transition boundary and split the mesh scheme into the sum of a nonlinear problem of small algebraic dimension and a larger linear problem. This information can be used for further construction of efficient algorithms for implementing the mesh scheme. Several algorithms for implementing mesh scheme are briefly discussed.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"37 1","pages":"149 - 158"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The time-fractional phase transition problem, formulated in enthalpy form, is studied. This nonlinear problem with an unknown moving boundary includes, as an example, a mathematical model of one-phase Stefan problem with the latent heat accumulation memory. The posed problem is approximated by the backward Euler mesh scheme. The unique solvability of the mesh scheme is proved and a priori estimates for the solution are obtained. The properties of the mesh problem are studied, in particular, an estimate of movement rate for the mesh phase transition boundary is established. The proved estimate make it possible to localize the phase transition boundary and split the mesh scheme into the sum of a nonlinear problem of small algebraic dimension and a larger linear problem. This information can be used for further construction of efficient algorithms for implementing the mesh scheme. Several algorithms for implementing mesh scheme are briefly discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类具有时间分数导数的相变问题的网格格式
摘要研究了用焓形式表示的时间分数相变问题。这个具有未知移动边界的非线性问题包括,作为一个例子,具有潜热累积记忆的单相Stefan问题的数学模型。所提出的问题由后向欧拉网格格式近似。证明了网格格式的唯一可解性,并得到了解的先验估计。研究了网格问题的性质,特别是建立了网格相变边界的运动速率估计。所证明的估计使相变边界的局部化成为可能,并将网格格式分解为小代数维数的非线性问题和较大线性问题的和。该信息可用于进一步构造用于实现网格方案的有效算法。简要讨论了实现网格方案的几种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
期刊最新文献
Nitrogen cycle module for INM RAS climate model Evaluation of 2010 heatwave prediction skill by SLNE coupled model Numerical solution of optimal control problems for linear systems of ordinary differential equations Two-phase flow simulation algorithm for numerical estimation of relative phase permeability curves of porous materials On the accuracy of shock-capturing schemes when calculating Cauchy problems with periodic discontinuous initial data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1