Topic Evolution and Emerging Topic Analysis Based on Open Source Software

Xiang Shen, Li Wang
{"title":"Topic Evolution and Emerging Topic Analysis Based on Open Source Software","authors":"Xiang Shen, Li Wang","doi":"10.2478/jdis-2020-0033","DOIUrl":null,"url":null,"abstract":"Abstract Purpose We present an analytical, open source and flexible natural language processing and text mining method for topic evolution, emerging topic detection and research trend forecasting for all kinds of data-tagged text. Design/methodology/approach We make full use of the functions provided by the open source VOSviewer and Microsoft Office, including a thesaurus for data clean-up and a LOOKUP function for comparative analysis. Findings Through application and verification in the domain of perovskite solar cells research, this method proves to be effective. Research limitations A certain amount of manual data processing and a specific research domain background are required for better, more illustrative analysis results. Adequate time for analysis is also necessary. Practical implications We try to set up an easy, useful, and flexible interdisciplinary text analyzing procedure for researchers, especially those without solid computer programming skills or who cannot easily access complex software. This procedure can also serve as a wonderful example for teaching information literacy. Originality/value This text analysis approach has not been reported before.","PeriodicalId":92237,"journal":{"name":"Journal of data and information science (Warsaw, Poland)","volume":"5 1","pages":"126 - 136"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data and information science (Warsaw, Poland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jdis-2020-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract Purpose We present an analytical, open source and flexible natural language processing and text mining method for topic evolution, emerging topic detection and research trend forecasting for all kinds of data-tagged text. Design/methodology/approach We make full use of the functions provided by the open source VOSviewer and Microsoft Office, including a thesaurus for data clean-up and a LOOKUP function for comparative analysis. Findings Through application and verification in the domain of perovskite solar cells research, this method proves to be effective. Research limitations A certain amount of manual data processing and a specific research domain background are required for better, more illustrative analysis results. Adequate time for analysis is also necessary. Practical implications We try to set up an easy, useful, and flexible interdisciplinary text analyzing procedure for researchers, especially those without solid computer programming skills or who cannot easily access complex software. This procedure can also serve as a wonderful example for teaching information literacy. Originality/value This text analysis approach has not been reported before.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于开源软件的主题演化与新兴主题分析
摘要目的我们提出了一种分析、开源、灵活的自然语言处理和文本挖掘方法,用于各种数据标记文本的主题进化、新兴主题检测和研究趋势预测。设计/方法论/方法我们充分利用开源VOSviewer和Microsoft Office提供的功能,包括用于数据清理的词库和用于比较分析的LOOKUP功能。研究结果通过在钙钛矿太阳能电池研究领域的应用和验证,证明该方法是有效的。研究局限性需要一定数量的手动数据处理和特定的研究领域背景才能获得更好、更具说明性的分析结果。有足够的时间进行分析也是必要的。实际意义我们试图为研究人员,特别是那些没有扎实的计算机编程技能或无法轻松访问复杂软件的研究人员,建立一个简单、有用和灵活的跨学科文本分析程序。这个程序也可以作为一个很好的例子,教信息素养。独创性/价值这种文本分析方法以前从未报道过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial board publication strategy and acceptance rates in Turkish national journals Multimodal sentiment analysis for social media contents during public emergencies Perspectives from a publishing ethics and research integrity team for required improvements Build neural network models to identify and correct news headlines exaggerating obesity-related scientific findings An author credit allocation method with improved distinguishability and robustness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1