Analysis of the slip flow in the hydrodynamic entrance region of a 2D microchannel

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-05-22 DOI:10.18186/thermal.1300390
Ayhan Nazmi Ilikan, R. Aydin
{"title":"Analysis of the slip flow in the hydrodynamic entrance region of a 2D microchannel","authors":"Ayhan Nazmi Ilikan, R. Aydin","doi":"10.18186/thermal.1300390","DOIUrl":null,"url":null,"abstract":"Two-dimensional developing flow in the entrance of a microchannel has been studied numer-ically. Due to its nature, a microchannel can be used in tight space applications and the length of channel can get very small values. Furthermore, if the hydrodynamic development length of flow in microchannel has comparably the same value with the channel length, the channel entrance parameters play critical role on the flow performance of a microscale channel. Lattice Boltzmann Method (LBM) was considered for studying and simulating the developing slip flows through a rectangular microchannel. A unique computational code for this study was developed by using LBM. The slip velocity boundary condition along with Knudsen number values in the slip flow regime was used for this model. The bounce-back boundary condition was considered at the top and bottom walls of the microchannel. The effects of the Reyn-olds numbers (1-100) and Knudsen numbers (0.001, 0.01, 0.1) on the hydrodynamic entrance length has been examined. The numerical results have been compared with the previous stud-ies in the literature and the similarities have been found satisfactory. The entrance length is found to be increasing with the increase of Reynolds and Knudsen numbers. A correlation for hydrodynamic development length as a function of Knudsen and Reynolds numbers was obtained by using the data extracted from LBM simulations performed in this study.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1300390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Two-dimensional developing flow in the entrance of a microchannel has been studied numer-ically. Due to its nature, a microchannel can be used in tight space applications and the length of channel can get very small values. Furthermore, if the hydrodynamic development length of flow in microchannel has comparably the same value with the channel length, the channel entrance parameters play critical role on the flow performance of a microscale channel. Lattice Boltzmann Method (LBM) was considered for studying and simulating the developing slip flows through a rectangular microchannel. A unique computational code for this study was developed by using LBM. The slip velocity boundary condition along with Knudsen number values in the slip flow regime was used for this model. The bounce-back boundary condition was considered at the top and bottom walls of the microchannel. The effects of the Reyn-olds numbers (1-100) and Knudsen numbers (0.001, 0.01, 0.1) on the hydrodynamic entrance length has been examined. The numerical results have been compared with the previous stud-ies in the literature and the similarities have been found satisfactory. The entrance length is found to be increasing with the increase of Reynolds and Knudsen numbers. A correlation for hydrodynamic development length as a function of Knudsen and Reynolds numbers was obtained by using the data extracted from LBM simulations performed in this study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维微通道流体动力学入口区的滑移流分析
对微通道入口处的二维发展流动进行了数值研究。由于其性质,微通道可以用于狭小空间的应用,并且通道的长度可以得到非常小的值。此外,如果微通道中流动的流体动力学发展长度与通道长度具有相同的值,则通道入口参数对微尺度通道的流动性能起着关键作用。采用格子Boltzmann方法研究和模拟了矩形微通道中滑移流的发展过程。使用LBM为本研究开发了一个独特的计算代码。该模型使用了滑移速度边界条件以及滑移流态中的克努森数。在微通道的顶壁和底壁处考虑了反弹边界条件。研究了雷诺数(1-100)和克努森数(0.001、0.01、0.1)对流体动力学入口长度的影响。将数值结果与文献中先前的研究进行了比较,发现相似性令人满意。入口长度随着雷诺数和克努森数的增加而增加。通过使用从本研究中进行的LBM模拟中提取的数据,获得了作为克努森数和雷诺数函数的流体动力学发展长度的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1