Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy

Photochem Pub Date : 2023-09-01 DOI:10.3390/photochem3030022
Jingjing Xiang, Jinting Shang, Zhen Wan
{"title":"Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy","authors":"Jingjing Xiang, Jinting Shang, Zhen Wan","doi":"10.3390/photochem3030022","DOIUrl":null,"url":null,"abstract":"Due to its favorable excited-state physicochemical properties, indium oxide (In2O3) has widely captured attention as a potentially great photocatalyst. However, an inferior charge separation efficiency limits its application. Recently, an increasing amount of evidence has demonstrated that the construction of surface defects is an effective strategy to boost photocatalytic performances. In this work, a ruthenium (Ru) species was successfully introduced into the lattice of In2O3 nanoparticles through co-precipitation and thermal treatment. It was found that the content of surface oxygen vacancies was directly related to the amount of Ru3+ doping, which further determines the separation efficiency of photogenerated carriers. As a result, the 0.5% Ru-In2O3 samples enriched with oxygen vacancies exhibit dramatically enhanced photocatalytic dehalogenation performances of decabromodiphenyl ether and hexabromobenzene, about four times higher than that of the pure In2O3 nanoparticles. This study emphasized the significance of the surface defects of the photocatalyst and may provide a valuable strategy to prepare highly active photocatalysts for photocatalytic dehalogenation reactions.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem3030022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its favorable excited-state physicochemical properties, indium oxide (In2O3) has widely captured attention as a potentially great photocatalyst. However, an inferior charge separation efficiency limits its application. Recently, an increasing amount of evidence has demonstrated that the construction of surface defects is an effective strategy to boost photocatalytic performances. In this work, a ruthenium (Ru) species was successfully introduced into the lattice of In2O3 nanoparticles through co-precipitation and thermal treatment. It was found that the content of surface oxygen vacancies was directly related to the amount of Ru3+ doping, which further determines the separation efficiency of photogenerated carriers. As a result, the 0.5% Ru-In2O3 samples enriched with oxygen vacancies exhibit dramatically enhanced photocatalytic dehalogenation performances of decabromodiphenyl ether and hexabromobenzene, about four times higher than that of the pure In2O3 nanoparticles. This study emphasized the significance of the surface defects of the photocatalyst and may provide a valuable strategy to prepare highly active photocatalysts for photocatalytic dehalogenation reactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧空位诱导Ru掺杂In2O3纳米粒子光催化脱卤性能的增强
由于其良好的激发态物理化学性质,氧化铟(In2O3)作为一种潜在的光催化剂受到了广泛的关注。然而,较差的电荷分离效率限制了它的应用。近年来,越来越多的证据表明,表面缺陷的构建是提高光催化性能的有效策略。在这项工作中,钌(Ru)物种通过共沉淀和热处理成功地引入到In2O3纳米颗粒的晶格中。发现表面氧空位的含量与Ru3+掺杂量直接相关,进而决定了光生载流子的分离效率。结果表明,含氧空位的0.5% Ru-In2O3纳米粒子对十溴联苯醚和六溴联苯的光催化脱卤性能显著提高,是纯In2O3纳米粒子的4倍左右。该研究强调了光催化剂表面缺陷的重要性,并为制备高活性光催化脱卤反应的光催化剂提供了有价值的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊最新文献
Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells Synthesis of Metallic and Metal Oxide Nanoparticles Using Homopolymers as Solid Templates: Luminescent Properties of the Eu+3 Nanoparticle Products A Review of Visible Light Responsive Photocatalysts for Arsenic Remediation in Water Excited-State Dynamics of Carbazole and tert-Butyl-Carbazole in Thin Films Charge-Selective Photocatalytic Degradation of Organic Dyes Driven by Naturally Occurring Halloysite Nanotubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1