Directed Evolution of Microbial Communities.

IF 10.4 1区 生物学 Q1 BIOPHYSICS Annual Review of Biophysics Pub Date : 2020-07-28 DOI:10.32942/osf.io/gsz7j
Álvaro Sánchez, Jean C. C. Vila, Chang-Yu Chang, Juan Díaz-Colunga, Sylvie Estrela, María Rebolleda-Gómez
{"title":"Directed Evolution of Microbial Communities.","authors":"Álvaro Sánchez, Jean C. C. Vila, Chang-Yu Chang, Juan Díaz-Colunga, Sylvie Estrela, María Rebolleda-Gómez","doi":"10.32942/osf.io/gsz7j","DOIUrl":null,"url":null,"abstract":"Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure-function landscape and propose practical guidelines for navigating these ecological landscapes. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"1 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32942/osf.io/gsz7j","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 43

Abstract

Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure-function landscape and propose practical guidelines for navigating these ecological landscapes. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物群落的定向进化。
定向进化是一种人工选择形式,几十年来一直被用来寻找具有新的或增强的功能特征的生物分子和生物体。定向进化可以被概念化为对基因型-表型图谱的引导探索,其中首先选择具有理想表型的遗传变体,然后进行诱变,以在基因型空间中搜索更好的突变体。近年来,将人工选择应用于微生物群落的想法得到了发展。在这篇文章中,我们回顾了人工选择在应用于大规模和多样化的无性分裂微生物群体时的主要局限性,并讨论了如何使用定向进化工具自上而下地设计群落。我们将微生物群落的定向进化概念化为对生态结构-功能景观的引导探索,并提出了驾驭这些生态景观的实用指南。《生物物理年度评论》第50卷预计最终在线出版日期为2021年5月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
期刊最新文献
Mechanisms of Inheritance of Chromatin States: From Yeast to Human. Collapse and Protein Folding: Should We Be Surprised that Biothermodynamics Works So Well? Protein Modeling with DEER Spectroscopy. Biophysical Principles Emerging from Experiments on Protein-Protein Association and Aggregation. Ancestral Reconstruction and the Evolution of Protein Energy Landscapes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1